Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Antioxidant defense in quiescent cells determines selectivity of electron transport chain inhibition-induced cell death

J. Blecha, SM. Novais, K. Rohlenova, E. Novotna, S. Lettlova, S. Schmitt, H. Zischka, J. Neuzil, J. Rohlena,

. 2017 ; 112 (-) : 253-266. [pub] 20170731

Language English Country United States

Document type Journal Article

Grant support
NV16-31604A MZ0 CEP Register

Mitochondrial electron transport chain (ETC) targeting shows a great promise in cancer therapy. It is particularly effective in tumors with high ETC activity where ETC-derived reactive oxygen species (ROS) are efficiently induced. Why modern ETC-targeted compounds are tolerated on the organismal level remains unclear. As most somatic cells are in non-proliferative state, the features associated with the ETC in quiescence could account for some of the specificity observed. Here we report that quiescent cells, despite increased utilization of the ETC and enhanced supercomplex assembly, are less susceptible to cell death induced by ETC disruption when glucose is not limiting. Mechanistically, this is mediated by the increased detoxification of ETC-derived ROS by mitochondrial antioxidant defense, principally by the superoxide dismutase 2 - thioredoxin axis. In contrast, under conditions of glucose limitation, cell death is induced preferentially in quiescent cells and is correlated with intracellular ATP depletion but not with ROS. This is related to the inability of quiescent cells to compensate for the lost mitochondrial ATP production by the upregulation of glucose uptake. Hence, elevated ROS, not the loss of mitochondrially-generated ATP, are responsible for cell death induction by ETC disruption in ample nutrients condition, e.g. in well perfused healthy tissues, where antioxidant defense imparts specificity. However, in conditions of limited glucose, e.g. in poorly perfused tumors, ETC disruption causes rapid depletion of cellular ATP, optimizing impact towards tumor-associated dormant cells. In summary, we propose that antioxidant defense in quiescent cells is aided by local glucose limitations to ensure selectivity of ETC inhibition-induced cell death.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18024763
003      
CZ-PrNML
005      
20180716093504.0
007      
ta
008      
180709s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.freeradbiomed.2017.07.033 $2 doi
035    __
$a (PubMed)28774815
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Blecha, Jan $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic.
245    10
$a Antioxidant defense in quiescent cells determines selectivity of electron transport chain inhibition-induced cell death / $c J. Blecha, SM. Novais, K. Rohlenova, E. Novotna, S. Lettlova, S. Schmitt, H. Zischka, J. Neuzil, J. Rohlena,
520    9_
$a Mitochondrial electron transport chain (ETC) targeting shows a great promise in cancer therapy. It is particularly effective in tumors with high ETC activity where ETC-derived reactive oxygen species (ROS) are efficiently induced. Why modern ETC-targeted compounds are tolerated on the organismal level remains unclear. As most somatic cells are in non-proliferative state, the features associated with the ETC in quiescence could account for some of the specificity observed. Here we report that quiescent cells, despite increased utilization of the ETC and enhanced supercomplex assembly, are less susceptible to cell death induced by ETC disruption when glucose is not limiting. Mechanistically, this is mediated by the increased detoxification of ETC-derived ROS by mitochondrial antioxidant defense, principally by the superoxide dismutase 2 - thioredoxin axis. In contrast, under conditions of glucose limitation, cell death is induced preferentially in quiescent cells and is correlated with intracellular ATP depletion but not with ROS. This is related to the inability of quiescent cells to compensate for the lost mitochondrial ATP production by the upregulation of glucose uptake. Hence, elevated ROS, not the loss of mitochondrially-generated ATP, are responsible for cell death induction by ETC disruption in ample nutrients condition, e.g. in well perfused healthy tissues, where antioxidant defense imparts specificity. However, in conditions of limited glucose, e.g. in poorly perfused tumors, ETC disruption causes rapid depletion of cellular ATP, optimizing impact towards tumor-associated dormant cells. In summary, we propose that antioxidant defense in quiescent cells is aided by local glucose limitations to ensure selectivity of ETC inhibition-induced cell death.
650    _2
$a adenosintrifosfát $x metabolismus $7 D000255
650    _2
$a buněčný cyklus $x genetika $7 D002453
650    _2
$a buněčná smrt $x genetika $7 D016923
650    _2
$a transformované buněčné linie $7 D002461
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a buněčné dýchání $7 D019069
650    _2
$a transport elektronů $7 D004579
650    _2
$a elektronový transportní řetězec $x genetika $x metabolismus $7 D045222
650    _2
$a endoteliální buňky $x cytologie $x metabolismus $7 D042783
650    _2
$a epitelové buňky $x cytologie $x metabolismus $7 D004847
650    _2
$a exprese genu $7 D015870
650    _2
$a glukosa $x metabolismus $7 D005947
650    _2
$a lidé $7 D006801
650    _2
$a mitochondrie $x metabolismus $7 D008928
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a reaktivní formy kyslíku $x metabolismus $7 D017382
650    _2
$a superoxiddismutasa $x genetika $x metabolismus $7 D013482
650    _2
$a thioredoxiny $x genetika $x metabolismus $7 D013879
655    _2
$a časopisecké články $7 D016428
700    1_
$a Novais, Silvia Magalhaes $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic.
700    1_
$a Rohlenova, Katerina $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic.
700    1_
$a Novotna, Eliska $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic.
700    1_
$a Lettlova, Sandra $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic.
700    1_
$a Schmitt, Sabine $u Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany.
700    1_
$a Zischka, Hans $u Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany.
700    1_
$a Neuzil, Jiri $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic; School of Medical Science, Griffith University, Southport, Qld, Australia. Electronic address: j.neuzil@griffith.edu.au.
700    1_
$a Rohlena, Jakub $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic. Electronic address: jakub.rohlena@ibt.cas.cz.
773    0_
$w MED00001857 $t Free radical biology & medicine $x 1873-4596 $g Roč. 112, č. - (2017), s. 253-266
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28774815 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20180716093802 $b ABA008
999    __
$a ok $b bmc $g 1316894 $s 1021684
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 112 $c - $d 253-266 $e 20170731 $i 1873-4596 $m Free radical biology & medicine $n Free Radic Biol Med $x MED00001857
GRA    __
$a NV16-31604A $p MZ0
LZP    __
$a Pubmed-20180709

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...