Myc 9aaTAD activation domain binds to mediator of transcription with superior high affinity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-05-00410
Ministerstvo Vnitra České Republiky
PubMed
39538178
PubMed Central
PMC11558822
DOI
10.1186/s10020-024-00896-7
PII: 10.1186/s10020-024-00896-7
Knihovny.cz E-zdroje
- Klíčová slova
- 9aaTAD, CBP, KIX, Myc, MycN,
- MeSH
- aktivace transkripce MeSH
- lidé MeSH
- proteinové domény MeSH
- protoonkogenní proteiny c-myc * metabolismus genetika MeSH
- sekvence aminokyselin MeSH
- vazba proteinů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- MYC protein, human MeSH Prohlížeč
- protoonkogenní proteiny c-myc * MeSH
The overexpression of MYC genes is frequently found in many human cancers, including adult and pediatric malignant brain tumors. Targeting MYC genes continues to be challenging due to their undruggable nature. Using our prediction algorithm, the nine-amino-acid activation domain (9aaTAD) has been identified in all four Yamanaka factors, including c-Myc. The predicted activation function was experimentally demonstrated for all these short peptides in transactivation assay. We generated a set of c-Myc constructs (1-108, 69-108 and 98-108) in the N-terminal regions and tested their ability to initiate transcription in one hybrid assay. The presence and absence of 9aaTAD (region 100-108) in the constructs strongly correlated with their activation functions (5-, 3- and 67-times respectively). Surprisingly, we observed co-activation function of the myc region 69-103, called here acetyl-TAD, previously described by Faiola et al. (Mol Cell Biol 25:10220-10234, 2005) and characterized in this study as a new domain collaborating with the 9aaTAD. We discovered strong interactions on a nanomolar scale between the Myc-9aaTAD activation domains and the KIX domain of CBP coactivator. We showed conservation of the 9aaTADs in the MYC family. In summary for the c-Myc oncogene, the acetyl-TAD and the 9aaTAD domains jointly mediated activation function. The c-Myc protein is largely intrinsically disordered and therefore difficult to target with small-molecule inhibitors. For the c-Myc driven tumors, the strong c-Myc interaction with the KIX domain represents a promising druggable target.
Zobrazit více v PubMed
Andresen C, Helander S, Lemak A, Farès C, Csizmok V, Carlsson J, Penn LZ, Forman-Kay JD, Arrowsmith CH, Lundström P, et al. Transient structure and dynamics in the disordered c-Myc transactivation domain affect Bin1 binding. Nucleic Acids Res. 2012;40:6353–66. PubMed PMC
Bédard M, Maltais L, Montagne M, Lavigne P. Miz-1 and Max compete to engage c-Myc: implication for the mechanism of inhibition of c-Myc transcriptional activity by Miz-1. Proteins. 2017;85:199–206. PubMed
Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905. PubMed PMC
Carabet LA, Rennie PS, Cherkasov A. Therapeutic inhibition of myc in cancer. Structural bases and computer-aided drug discovery approaches. Int J Mol Sci. 2018;20:120. PubMed PMC
Casey SC, Baylot V, Felsher DW. The MYC oncogene is a global regulator of the immune response. Blood. 2018;131:2007–15. PubMed PMC
Cowling VH, Cole MD. Mechanism of transcriptional activation by the Myc oncoproteins. Semin Cancer Biol. 2006;16:242–52. PubMed
Dang CV. MYC on the path to cancer. Cell. 2012;149:22–35. PubMed PMC
Dauch D, Rudalska R, Cossa G, Nault J-C, Kang T-W, Wuestefeld T, Hohmeyer A, Imbeaud S, Yevsa T, Hoenicke L, et al. A MYC-aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat Med. 2016;22:744–53. PubMed
Duffy MJ, O’Grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat Rev. 2021;94:102154. PubMed
Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E, Farina A, Martinez E. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol. 2005;25:10220–34. PubMed PMC
Feris EJ, Hinds JW, Cole MD. Formation of a structurally-stable conformation by the intrinsically disordered MYC:TRRAP complex. PLoS ONE. 2019;14:e0225784. PubMed PMC
Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE. Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J Biol Chem. 2002;277:43168–74. PubMed
Herbst DA, Esbin MN, Louder RK, Dugast-Darzacq C, Dailey GM, Fang Q, Darzacq X, Tjian R, Nogales E. Structure of the human SAGA coactivator complex. Nat Struct Mol Biol. 2021;28:989–96. PubMed PMC
Hofrova A, Lousa P, Kubickova M, Hritz J, Otasevic T, Repko M, Knight A, Piskacek M. Universal two-point interaction of mediator KIX with 9aaTAD activation domains. J Cell Biochem. 2021. 10.1002/jcb.30075. PubMed
Knight A, Piskacek M. Cryptic inhibitory regions nearby activation domains. Biochimie. 2022;200:19–26. PubMed
Kortlever RM, Sodir NM, Wilson CH, Burkhart DL, Pellegrinet L, Brown Swigart L, Littlewood TD, Evan GI. Myc cooperates with Ras by programming inflammation and immune suppression. Cell. 2017;171:1301-1315.e14. PubMed PMC
Kress TR, Sabò A, Amati B. MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer. 2015;15:593–607. PubMed
Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, Bradner JE, Lee TI, Young RA. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012;151:56–67. PubMed PMC
Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer. 2021;20:3. PubMed PMC
Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J, Wieshofer C, Rescheneder P, Lipp JJ, Herzog VA, Reichholf B, et al. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science. 2018;360:800–5. PubMed PMC
Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, Wang R, Green DR, Tessarollo L, Casellas R, et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012;151:68–79. PubMed PMC
Patel JH, Loboda AP, Showe MK, Showe LC, McMahon SB. Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer. 2004;4:562–8. PubMed
Peter B, Eisenwort G, Sadovnik I, Bauer K, Willmann M, Rülicke T, Berger D, Stefanzl G, Greiner G, Hoermann G, et al. BRD4 degradation blocks expression of MYC and multiple forms of stem cell resistance in Ph+ chronic myeloid leukemia. Am J Hematol. 2022;97:1215–25. PubMed PMC
Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M. Nine-amino-acid transactivation domain: establishment and prediction utilities. Genomics. 2007;89:756–68. PubMed
Piskacek M, Vasku A, Hajek R, Knight A. Shared structural features of the 9aaTAD family in complex with CBP. Mol Biosyst. 2015;11:844–51. PubMed
Piskacek M, Havelka M, Rezacova M, Knight A. The 9aaTAD Transactivation Domains: From Gal4 to p53. PLoS ONE. 2016;11:e0162842. PubMed PMC
Piskacek M, Havelka M, Rezacova M, Knight A. The 9aaTAD is exclusive activation domain in Gal4. PLoS ONE. 2017;12:e0169261. PubMed PMC
Piskacek M, Havelka M, Jendruchova K, Knight A. Nuclear hormone receptors: Ancient 9aaTAD and evolutionally gained NCoA activation pathways. J Steroid Biochem Mol Biol. 2018;187:118. PubMed
Piskacek M, Havelka M, Jendruchova K, Knight A, Keegan LP. The evolution of the 9aaTAD domain in Sp2 proteins: inactivation with valines and intron reservoirs. Cell Mol Life Sci. 2019;77:1793. PubMed PMC
Piskacek M, Otasevic T, Repko M, Knight A. The 9aaTAD activation domains in the Yamanaka transcription factors Oct4, Sox2, Myc, and Klf4. Stem Cell Rev Rep. 2021;17:1934–6. PubMed
Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of disordered protein. Proteins Struct Funct Bioinform. 2001;42:38–48. PubMed
Sandholzer J, Hoeth M, Piskacek M, Mayer H, de Martin R. A novel 9-amino-acid transactivation domain in the C-terminal part of Sox18. Biochem Biophys Res Commun. 2007;360:370–4. PubMed
Sodir NM, Swigart LB, Karnezis AN, Hanahan D, Evan GI, Soucek L. Endogenous Myc maintains the tumor microenvironment. Genes Dev. 2011;25:907–16. PubMed PMC
Soucek L, Helmer-Citterich M, Sacco A, Jucker R, Cesareni G, Nasi S. Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene. 1998;17:2463–72. PubMed
Stone J, de Lange T, Ramsay G, Jakobovits E, Bishop JM, Varmus H, Lee W. Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol. 1987;7:1697–709. PubMed PMC
Sullivan SS, Weinzierl ROJ. Optimization of molecular dynamics simulations of c-MYC1-88-an intrinsically disordered system. Life (basel). 2020;10:E109. PubMed PMC
Trakala M, Aggarwal M, Sniffen C, Zasadil L, Carroll A, Ma D, Su XA, Wangsa D, Meyer A, Sieben CJ, et al. Clonal selection of stable aneuploidies in progenitor cells drives high-prevalence tumorigenesis. Genes Dev. 2021. 10.1101/gad.348341.121. PubMed PMC
Vita M, Henriksson M. The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol. 2006;16:318–30. PubMed
Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, Rycak L, Dumay-Odelot H, Karim S, Bartkuhn M, et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 2014;511:483–7. PubMed PMC
Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, Huang W. Alternative approaches to target Myc for cancer treatment. Sig Transduct Target Ther. 2021;6:1–14. PubMed PMC
Wang J, Yu X, Gong W, Liu X, Park K-S, Ma A, Tsai Y-H, Shen Y, Onikubo T, Pi W-C, et al. EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat Cell Biol. 2022;24:384–99. PubMed PMC
Zeller KI, Zhao X, Lee CWH, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A. 2006;103:17834–9. PubMed PMC
Zheng F, Yue C, Li G, He B, Cheng W, Wang X, Yan M, Long Z, Qiu W, Yuan Z, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7:10180. PubMed PMC
Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–8. PubMed PMC