Universal two-point interaction of mediator KIX with 9aaTAD activation domains

. 2021 Oct ; 122 (10) : 1544-1555. [epub] 20210705

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34224597

The nine-amino-acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3-4 and p6-7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF-kB, and p53. In this study, we analyzed the 9aaTADs-KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1-α2-α3 are influenced by sterically-associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX-L12-G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1-α2-α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX-L12-G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX-L12-G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co-operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α-helixes and enables the enhanced formation of the KIX-L12-G2 region. This contributes to free energy and is the key for the KIX-9aaTAD binding. Therefore, the 9aaTAD-KIX interactions do not operate under the rigid key-and-lock mechanism what explains the 9aaTAD natural variability.

Zobrazit více v PubMed

Piskacek M, Havelka M, Jendruchova K, Knight A. Nuclear hormone receptors: Ancient 9aaTAD and evolutionally gained NCoA activation pathways. J Steroid Biochem Mol Biol. 2018;187:118-123. https://doi.org/10.1016/j.jsbmb.2018.11.008

Piskacek M, Havelka M, Rezacova M, Knight A. The 9aaTAD transactivation domains: from Gal4 to p53. PLOS One. 2016;11(9):e0162842.

Piskacek M, Havelka M, Rezacova M, Knight A. Gal4 activation domain 9aaTAD could be inactivated by adjacent mini-inhibitory domain and reactivated by distal re-activation domain. bioRxiv. 2017:110882.

Piskacek M, Jendruchova K, Rezacova M, et al. The 9aaTAD activation domains in the four Yamanaka Oct4, Sox2, Myc, and Klf4 transcription factors essential during the stem cell development. bioRxiv. 2019.

Piskacek M, Vasku A, Hajek R, Knight A. Shared structural features of the 9aaTAD family in complex with CBP. Mol BioSyst. 2015;11(3):844-851.

Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M. Nine-amino-acid transactivation domain: establishment and prediction utilities. Genomics. 2007;89(6):756-768.

Di Lello P, Miller Jenkins LM, Mas C, et al. p53 and TFIIEalpha share a common binding site on the Tfb1/p62 subunit of TFIIH. Proc Natl Acad Sci USA. 2008;105(1):106-111.

Lin L, Chamberlain L, Zhu LJ, Green MR. Analysis of Gal4-directed transcription activation using Tra1 mutants selectively defective for interaction with Gal4. Proc Natl Acad Sci USA. 2012;109(6):1997-2002.

Teufel DP, Freund SM, Bycroft M, Fersht AR. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci USA. 2007;104(17):7009-7014.

Uesugi M, Verdine GL. The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Proc Natl Acad Sci USA. 1999;96(26):14801-14806.

Arai M, Sugase K, Dyson HJ, Wright PE. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. PNAS. 2015;112(31):9614-9619.

De Guzman RN, Goto NK, Dyson HJ, Wright PE. Structural basis for cooperative transcription factor binding to the CBP coactivator. J Mol Biol. 2006;355(5):1005-1013.

Korkmaz EN, Nussinov R, Haliloğlu T. Conformational control of the binding of the transactivation domain of the MLL protein and c-Myb to the KIX domain of CREB. PLoS Comput Biol. 2012;8(3):e1002420.

Law SM, Gagnon JK, Mapp AK, Brooks CL. Prepaying the entropic cost for allosteric regulation in KIX. Proc Nat Acad Sci. 2014;111(33):12067-12072.

Thakur JK, Yadav A, Yadav G. Molecular recognition by the KIX domain and its role in gene regulation. Nucleic Acids Res. 2014;42(4):2112-2125.

Yadav A, Thakur JK, Yadav G. KIXBASE: a comprehensive web resource for identification and exploration of KIX domains. Sci Rep. 2017;7(1):14924.

Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE. Mapping the interactions of the p53 transactivation domain with the KIX domain of CBP. Biochemistry. 2009;48(10):2115-2124.

Gopalakrishnan C, Kamaraj B, Purohit R. Mutations in microRNA binding sites of CEP genes involved in cancer. Cell Biochem Biophys. 2014;70(3):1933-1942.

Rajendran V, Gopalakrishnan C, Purohit R. Impact of point mutation P29S in RAC1 on tumorigenesis. Tumour Biol. 2016;37(11):15293-15304.

Singh R, Bhardwaj V, Das P, Purohit R. Natural analogues inhibiting selective cyclin-dependent kinase protein isoforms: a computational perspective. J Biomol Struct Dyn. 2020;38(17):5126-5135.

Singh R, Bhardwaj VK, Sharma J, Das P, Purohit R. Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Genomics. 2021;113(1 Pt 2):707-715.

Tanwar G, Purohit R. Gain of native conformation of Aurora A S155R mutant by small molecules. J Cell Biochem. 2019;120:11104-11114. https://doi.org/10.1002/jcb.28387

Bhardwaj VK, Purohit R. Targeting the protein-protein interface pocket of Aurora-A-TPX2 complex: rational drug design and validation. J Biomol Struct Dyn. 2020:1-10.

Bhardwaj VK, Purohit R. A new insight into protein-protein interactions and the effect of conformational alterations in PCNA. Int J Biol Macromol. 2020;148:999-1009.

Lemieux RU, Spohr U. How Emil Fischer was Led to the Lock and Key Concept for Enzyme Specificity11Presented at the symposium “Emil Fischer: 100 Years of Carbohydrate Chemistry,” 203rd National Meeting of the American Chemical Society, Division of Carbohydrate Chemistry, San Francisco, California, April 5-10, 1992. In: Horton D, ed. Advances in Carbohydrate Chemistry and Biochemistry. Academic Press; 1994:1-20.

Wittekind M, Mueller L. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J Magn Reson. 1993;101:201-205.

Grzesiek S, Bax A. Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J Magn Reson. 1992;96(2):432-440.

Bax A, Grzesiek S. Methodological advances in protein NMR. Acc Chem Res. 1993;26(4):131-138.

Clubb RT, Thanabal V, Wagner G. A constant-time three-dimensional triple-resonance pulse scheme to correlate intraresidue 1HN, 15N, and 13C′ chemical shifts in 15N and 13C-labelled proteins. J Magn Reson. 1992;97(1):213-217.

Bax A, Ikura M. An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J Biomol NMR. 1991;1(1):99-104.

Goddard TD, Huang CC, Meng EC, et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 2018;27(1):14-25.

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6(3):277-293.

Lee W, Tonelli M, Markley JL. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015;31(8):1325-1327.

Wei Y, Horng J-C, Vendel AC, Raleigh DP, Lumb KJ. Contribution to stability and folding of a buried polar residue at the CARM1 methylation site of the KIX domain of CBP. Biochemistry. 2003;42(23):7044-7049.

Piskacek M, Havelka M, Rezacova M, Knight A. The 9aaTAD is exclusive activation domain in Gal4. PLoS One. 2017;12(1):e0169261.

Thakur JK, Arthanari H, Yang F, Chau KH, Wagner G, Näär AM. Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p. J Biol Chem. 2009;284(7):4422-4428.

Thakur JK, Arthanari H, Yang F, et al. A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature. 2008;452(7187):604-609.

Jedidi I, Zhang F, Qiu H, et al. Activator Gcn4 employs multiple segments of Med15/Gal11, including the KIX domain, to recruit mediator to target genes in vivo. J Biol Chem. 2010;285(4):2438-2455.

Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE. Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J Biol Chem. 2002;277(45):43168-43174.

Arai M, Dyson HJ, Wright PE. Leu628 of the KIX domain of CBP is a key residue for the interaction with the MLL transactivation domain. FEBS Lett. 2010;584(22):4500-4504.

Lecoq L, Raiola L, Chabot PR, et al. Structural characterization of interactions between transactivation domain 1 of the p65 subunit of NF-κB and transcription regulatory factors. Nucleic Acids Res. 2017;45(9):5564-5576.

Clark MD, Kumar GS, Marcum R, Luo Q, Zhang Y, Radhakrishnan I. Molecular basis for the mechanism of constitutive CBP/p300 coactivator recruitment by CRTC1-MAML2 and its implications in cAMP signaling. Biochemistry. 2015;54(35):5439-5446.

Toto A, Giri R, Brunori M, Gianni S. The mechanism of binding of the KIX domain to the mixed lineage leukemia protein and its allosteric role in the recognition of c-Myb. Protein Sci. 2014;23(7):962-969.

Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol. 2001;21(7):2249-2258.

Prasad R, Yano T, Sorio C, et al. Domains with transcriptional regulatory activity within the ALL1 and AF4 proteins involved in acute leukemia. PNAS. 1995;92(26):12160-12164.

Piskacek M, Havelka M, Jendruchova K, Knight A, Keegan LP. The evolution of the 9aaTAD domain in Sp2 proteins: inactivation with valines and intron reservoirs. Cell Mol Life Sci. 2019. https://doi.org/10.1007/s00018-019-03251-w

Baumgartner U, Hamilton B, Piskacek M, Ruis H, Rottensteiner H. Functional analysis of the Zn(2)Cys(6) transcription factors Oaf1p and Pip2p. Different roles in fatty acid induction of beta-oxidation in Saccharomyces cerevisiae. J Biol Chem. 1999;274(32):22208-22216.

Sandholzer J, Hoeth M, Piskacek M, Mayer H, Martin Rde. A novel 9-amino-acid transactivation domain in the C-terminal part of Sox18. Biochem Biophys Res Commun. 2007;360(2):370-374.

Henley MJ, Linhares BM, Morgan BS, Cierpicki T, Fierke CA, Mapp AK. Unexpected specificity within dynamic transcriptional protein-protein complexes. PNAS. 2020;117:27346-27353. https://doi.org/10.1073/pnas.2013244117

Hope IA, Mahadevan S, Struhl K. Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein. Nature. 1988;333(6174):635-640.

Ptashne M, Gann A. Transcriptional activation by recruitment. Nature. 1997;386(6625):569-577.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...