BRD4 degradation blocks expression of MYC and multiple forms of stem cell resistance in Ph+ chronic myeloid leukemia

. 2022 Sep ; 97 (9) : 1215-1225. [epub] 20220718

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35794848

Grantová podpora
P 30625 Austrian Science Fund FWF - Austria

In most patients with chronic myeloid leukemia (CML) clonal cells can be kept under control by BCR::ABL1 tyrosine kinase inhibitors (TKI). However, overt resistance or intolerance against these TKI may occur. We identified the epigenetic reader BRD4 and its downstream-effector MYC as growth regulators and therapeutic targets in CML cells. BRD4 and MYC were found to be expressed in primary CML cells, CD34+ /CD38- leukemic stem cells (LSC), and in the CML cell lines KU812, K562, KCL22, and KCL22T315I . The BRD4-targeting drug JQ1 was found to suppress proliferation in KU812 cells and primary leukemic cells in the majority of patients with chronic phase CML. In the blast phase of CML, JQ1 was less effective. However, the BRD4 degrader dBET6 was found to block proliferation and/or survival of primary CML cells in all patients tested, including blast phase CML and CML cells exhibiting the T315I variant of BCR::ABL1. Moreover, dBET6 was found to block MYC expression and to synergize with BCR::ABL1 TKI in inhibiting the proliferation in the JQ1-resistant cell line K562. Furthermore, BRD4 degradation was found to overcome osteoblast-induced TKI resistance of CML LSC in a co-culture system and to block interferon-gamma-induced upregulation of the checkpoint antigen PD-L1 in LSC. Finally, dBET6 was found to suppress the in vitro survival of CML LSC and their engraftment in NSG mice. Together, targeting of BRD4 and MYC through BET degradation sensitizes CML cells against BCR::ABL1 TKI and is a potent approach to overcome multiple forms of drug resistance in CML LSC.

Zobrazit více v PubMed

Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96(10):3343‐3346. PubMed

Arlinghaus R, Sun T. Signal transduction pathways in Bcr‐Abl transformed cells. Cancer Treat Res. 2004;119:239‐270. PubMed

Melo JV, Deininger MW. Biology of chronic myelogenous leukemia—signaling pathways of initiation and transformation. Hematol Oncol Clin North Am. 2004;18(3):545‐568. PubMed

Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR‐ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031‐1037. PubMed

Kantarjian H, Sawyers C, Hochhaus A, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346(9):645‐652. PubMed

O'Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low‐dose cytarabine for newly diagnosed chronic‐phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994‐1004. PubMed

Druker BJ, Guilhot F, O'Brien SG, et al. Five‐year follow‐up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408‐2417. PubMed

Kantarjian H, Cortes J. BCR‐ABL tyrosine kinase inhibitors in chronic myeloid leukemia: using guidelines to make rational treatment choices. J Natl Compr Cancer Netw. 2008;6:S37‐S42. PubMed

Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI‐571 cancer therapy caused by BCR‐ABL gene mutation or amplification. Science. 2001;293(5531):876‐880. PubMed

Shah NP, Nicoll JM, Nagar B, et al. Multiple BCR‐ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002;2(2):117‐125. PubMed

Deininger M. Resistance and relapse with imatinib in CML: causes and consequences. J Natl Compr Cancer Netw. 2008;6:S11‐S21. PubMed

Valent P. Emerging stem cell concepts for imatinib‐resistant chronic myeloid leukaemia: implications for the biology, management, and therapy of the disease. Br J Haematol. 2008;142(3):361‐378. PubMed

Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305(5682):399‐401. PubMed

Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr‐Abl. Cancer Cell. 2005;7(2):129‐141. PubMed

Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib‐resistant CML and Philadelphia chromosome‐positive ALL. N Engl J Med. 2006;354(24):2542‐2551. PubMed

Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib‐resistant Philadelphia chromosome‐positive leukemias. N Engl J Med. 2006;354(24):2531‐2541. PubMed

Weisberg E, Manley PW, Cowan‐Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR‐ABL for the treatment of imatinib‐resistant chronic myeloid leukaemia. Nat Rev Cancer. 2007;7(5):345‐356. PubMed

Nicolini FE, Hayette S, Corm S, et al. Clinical outcome of 27 imatinib mesylate‐resistant chronic myelogenous leukemia patients harboring a T315I BCR‐ABL mutation. Haematologica. 2007;92(9):1238‐1241. PubMed

Jabbour E, Kantarjian H, Jones D, et al. Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy. Blood. 2008;112(1):53‐55. PubMed PMC

Cortes JE, Kim DW, Pinilla‐Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome‐positive leukemias. N Engl J Med. 2013;369(19):1783‐1796. PubMed PMC

O'Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan‐BCR‐ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation‐based resistance. Cancer Cell. 2009;16(5):401‐412. PubMed PMC

Hughes TP, Mauro MJ, Cortes JE, et al. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N Engl J Med. 2019;381(24):2315‐2326. PubMed PMC

Khorashad JS, Kelley TW, Szankasi P, et al. BCR‐ABL1 compound mutations in tyrosine kinase inhibitor‐resistant CML: frequency and clonal relationships. Blood. 2013;121(3):489‐498. PubMed PMC

Zabriskie MS, Eide CA, Tantravahi SK, et al. BCR‐ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome‐positive leukemia. Cancer Cell. 2014;26(3):428‐442. PubMed PMC

Byrgazov K, Lucini CB, Valent P, Hantschel O, Lion T. BCR‐ABL1 compound mutants display differential and dose‐dependent responses to ponatinib. Haematologica. 2018;103(1):e10‐e12. PubMed PMC

Nair RR, Tolentino J, Hazlehurst LA. The bone marrow microenvironment as a sanctuary for residual disease in CML. Biochem Pharmacol. 2010;80(5):602‐612. PubMed PMC

Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR‐ABL activity. J Clin Invest. 2011;121(1):396‐409. PubMed PMC

Agarwal P, Bhatia R. Influence of bone marrow microenvironment on leukemic stem cells: breaking up an intimate relationship. Adv Cancer Res. 2015;127:227‐252. PubMed

Martinelli G, Soverini S, Rosti G, Cilloni D, Baccarani M. New tyrosine kinase inhibitors in chronic myeloid leukemia. Haematologica. 2005;90(4):534‐541. PubMed

Quintás‐Cardama A, Cortes J. Therapeutic options against BCR‐ABL1 T315I‐positive chronic myelogenous leukemia. Clin Cancer Res. 2008;14(14):4392‐4399. PubMed

Dawson MA, Kouzarides T, Huntly BJ. Targeting epigenetic readers in cancer. N Engl J Med. 2012;367(7):647‐657. PubMed

Godley LA, Le Beau MM. The histone code and treatments for acute myeloid leukemia. N Engl J Med. 2012;366(10):960‐961. PubMed

Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067‐1073. PubMed PMC

Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478(7370):524‐528. PubMed PMC

Herrmann H, Blatt K, Shi J, et al. Small‐molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem‐ and progenitor cells in acute myeloid leukemia AML. Oncotarget. 2012;3(12):1588‐1599. PubMed PMC

Rathert P, Roth M, Neumann T, et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature. 2015;525(7570):543‐547. PubMed PMC

Fong CY, Gilan O, Lam EY, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525(7570):538‐542. PubMed PMC

Winter GE, Buckley DL, Paulk J, et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. 2015;348(6241):1376‐1381. PubMed PMC

Winter GE, Mayer A, Buckley DL, et al. BET Bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol Cell. 2017;67(1):5‐18.e19. PubMed PMC

Wedeh G, Cerny‐Reiterer S, Eisenwort G, et al. Identification of bromodomain‐containing protein‐4 as a novel marker and epigenetic target in mast cell leukemia. Leukemia. 2015;29(11):2230‐2237. PubMed PMC

Peter B, Bibi S, Eisenwort G, et al. Drug‐induced inhibition of phosphorylation of STAT5 overrides drug resistance in neoplastic mast cells. Leukemia. 2018;32(4):1016‐1022. PubMed PMC

Winter GE, Rix U, Carlson SM, et al. Systems‐pharmacology dissection of a drug synergy in imatinib‐resistant CML. Nat Chem Biol. 2012;8(11):905‐912. PubMed PMC

Jiang X, Zhao Y, Smith C, et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR‐ABL targeted therapies. Leukemia. 2007;21(5):926‐935. PubMed

Barnes DJ, Melo JV. Primitive, quiescent and difficult to kill: the role of non‐proliferating stem cells in chronic myeloid leukemia. Cell Cycle. 2006;5(24):2862‐2866. PubMed

Krause DS, Van Etten RA. Right on target: eradicating leukemic stem cells. Trends Mol Med. 2007;13(11):470‐481. PubMed PMC

Skorski T, Kanakaraj P, Nieborowska‐Skorska M, et al. Phosphatidylinositol‐3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome‐positive cells. Blood. 1995;86(2):726‐736. PubMed

Sattler M, Mohi MG, Pride YB, et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell. 2002;1(5):479‐492. PubMed

Aceves‐Luquero CI, Agarwal A, Callejas‐Valera JL, et al. ERK2, but not ERK1, mediates acquired and “de novo” resistance to imatinib mesylate: implication for CML therapy. PLoS One. 2009;4(7):e6124. PubMed PMC

Kavalerchik E, Goff D, Jamieson CH. Chronic myeloid leukemia stem cells. J Clin Oncol. 2008;26(17):2911‐2915. PubMed

Valent P, Bonnet D, De Maria R, et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer. 2012;12(11):767‐775. PubMed

Zhang B, Li M, McDonald T, et al. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N‐cadherin and Wnt‐β‐catenin signaling. Blood. 2013;121(10):1824‐1838. PubMed PMC

Arrigoni E, Del Re M, Galimberti S, et al. A concise review: chronic myeloid leukemia: stem cell niche and response to pharmacologic treatment. Stem Cells Transl Med. 2018;7(3):305‐314. PubMed PMC

Wang L, Giannoudis A, Lane S, Williamson P, Pirmohamed M, Clark RE. Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther. 2008;83(2):258‐264. PubMed

Hogg SJ, Vervoort SJ, Deswal S, et al. BET‐Bromodomain inhibitors engage the host immune system and regulate expression of the immune checkpoint ligand PD‐L1. Cell Rep. 2017;18(9):2162‐2174. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...