The 9aaTAD Transactivation Domains: From Gal4 to p53
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27618436
PubMed Central
PMC5019370
DOI
10.1371/journal.pone.0162842
PII: PONE-D-16-26395
Knihovny.cz E-zdroje
- MeSH
- aktivace transkripce * MeSH
- DNA vazebné proteiny chemie MeSH
- nádorový supresorový protein p53 genetika MeSH
- Saccharomyces cerevisiae - proteiny chemie MeSH
- Saccharomyces cerevisiae genetika MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- transkripční faktory chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- GAL4 protein, S cerevisiae MeSH Prohlížeč
- nádorový supresorový protein p53 MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- transkripční faktory MeSH
The family of the Nine amino acid Transactivation Domain, 9aaTAD family, comprises currently over 40 members. The 9aaTAD domains are universally recognized by the transcriptional machinery from yeast to man. We had identified the 9aaTAD domains in the p53, Msn2, Pdr1 and B42 activators by our prediction algorithm. In this study, their competence to activate transcription as small peptides was proven. Not surprisingly, we elicited immense 9aaTAD divergence in hundreds of identified orthologs and numerous examples of the 9aaTAD species' convergence. We found unforeseen similarity of the mammalian p53 with yeast Gal4 9aaTAD domains. Furthermore, we identified artificial 9aaTAD domains generated accidentally by others. From an evolutionary perspective, the observed easiness to generate 9aaTAD transactivation domains indicates the natural advantage for spontaneous generation of transcription factors from DNA binding precursors.
Zobrazit více v PubMed
Kakidani H, Ptashne M. GAL4 activates gene expression in mammalian cells. Cell. 1988;52: 161–167. PubMed
Fields S, Jang SK. Presence of a potent transcription activating sequence in the p53 protein. Science. 1990;249: 1046–1049. PubMed
Baumgartner U, Hamilton B, Piskacek M, Ruis H, Rottensteiner H. Functional analysis of the Zn(2)Cys(6) transcription factors Oaf1p and Pip2p. Different roles in fatty acid induction of beta-oxidation in Saccharomyces cerevisiae. J Biol Chem. 1999;274: 22208–22216. PubMed
Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M. Nine-amino-acid transactivation domain: establishment and prediction utilities. Genomics. 2007;89: 756–768. 10.1016/j.ygeno.2007.02.003 PubMed DOI
Sandholzer J, Hoeth M, Piskacek M, Mayer H, de Martin R. A novel 9-amino-acid transactivation domain in the C-terminal part of Sox18. Biochem Biophys Res Commun. 2007;360: 370–374. 10.1016/j.bbrc.2007.06.095 PubMed DOI
Lindert U, Cramer M, Meuli M, Georgiev O, Schaffner W. Metal-responsive transcription factor 1 (MTF-1) activity is regulated by a nonconventional nuclear localization signal and a metal-responsive transactivation domain. Mol Cell Biol. 2009;29: 6283–6293. 10.1128/MCB.00847-09 PubMed DOI PMC
Piskacek M. 9aaTAD Prediction result (2006). Nature Precedings. 2009; 10.1038/npre.2009.3984.1 DOI
Piskacek M. Common Transactivation Motif 9aaTAD recruits multiple general co-activators TAF9, MED15, CBP and p300. Nature Precedings. 2009; 10.1038/npre.2009.3488.2 DOI
Piskacek M. 9aaTADs mimic DNA to interact with a pseudo-DNA Binding Domain KIX of Med15 (Molecular Chameleons). Nature Precedings. 2009; 10.1038/npre.2009.3939.1 DOI
Hong JY, Chae MJ, Lee IS, Lee YN, Nam MH, Kim DY, et al. Phosphorylation-mediated regulation of a rice ABA responsive element binding factor. Phytochemistry. 2011;72: 27–36. 10.1016/j.phytochem.2010.10.005 PubMed DOI
Shekhawat UKS, Ganapathi TR, Srinivas L. Cloning and characterization of a novel stress-responsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. Karibale Monthan (ABB group) using transformed banana cells. Mol Biol Rep. 2011;38: 4023–4035. 10.1007/s11033-010-0521-4 PubMed DOI
Lou S, Luo Y, Cheng F, Huang Q, Shen W, Kleiboeker S, et al. Human parvovirus B19 DNA replication induces a DNA damage response that is dispensable for cell cycle arrest at phase G2/M. J Virol. 2012;86: 10748–10758. 10.1128/JVI.01007-12 PubMed DOI PMC
Matsushita A, Inoue H, Goto S, Nakayama A, Sugano S, Hayashi N, et al. The nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program. Plant J. 2012; 10.1111/tpj.12035 PubMed DOI PMC
Aguilar X, Blomberg J, Brännström K, Olofsson A, Schleucher J, Björklund S. Interaction studies of the human and Arabidopsis thaliana Med25-ACID proteins with the herpes simplex virus VP16- and plant-specific Dreb2a transcription factors. PLoS ONE. 2014;9: e98575 10.1371/journal.pone.0098575 PubMed DOI PMC
Scharenberg MA, Pippenger BE, Sack R, Zingg D, Ferralli J, Schenk S, et al. TGF-β-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms. J Cell Sci. 2014;127: 1079–1091. 10.1242/jcs.142075 PubMed DOI
Piskacek M, Vasku A, Hajek R, Knight A. Shared structural features of the 9aaTAD family in complex with CBP. Mol Biosyst. 2015;11: 844–851. 10.1039/c4mb00672k PubMed DOI
Qiu Y, Li M, Pasoreck EK, Long L, Shi Y, Galvão RM, et al. HEMERA Couples the Proteolysis and Transcriptional Activity of PHYTOCHROME INTERACTING FACTORs in Arabidopsis Photomorphogenesis. Plant Cell. 2015; 10.1105/tpc.114.136093 PubMed DOI PMC
Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE. Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J Biol Chem. 2002;277: 43168–43174. 10.1074/jbc.M207660200 PubMed DOI
Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE. Mapping the interactions of the p53 transactivation domain with the KIX domain of CBP. Biochemistry. 2009;48: 2115–2124. 10.1021/bi802055v PubMed DOI PMC
Cook PR, Polakowski N, Lemasson I. HTLV-1 HBZ protein deregulates interactions between cellular factors and the KIX domain of p300/CBP. J Mol Biol. 2011;409: 384–398. 10.1016/j.jmb.2011.04.003 PubMed DOI PMC
Lallet S, Garreau H, Garmendia-Torres C, Szestakowska D, Boy-Marcotte E, Quevillon-Chéruel S, et al. Role of Gal11, a component of the RNA polymerase II mediator in stress-induced hyperphosphorylation of Msn2 in Saccharomyces cerevisiae. Mol Microbiol. 2006;62: 438–452. 10.1111/j.1365-2958.2006.05363.x PubMed DOI
Sadeh A, Baran D, Volokh M, Aharoni A. Conserved motifs in the Msn2-activating domain are important for Msn2-mediated yeast stress response. J Cell Sci. 2012;125: 3333–3342. 10.1242/jcs.096446 PubMed DOI
Thakur JK, Arthanari H, Yang F, Chau KH, Wagner G, Näär AM. Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p. J Biol Chem. 2009;284: 4422–4428. 10.1074/jbc.M808263200 PubMed DOI PMC
Thakur JK, Arthanari H, Yang F, Pan S-J, Fan X, Breger J, et al. A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature. 2008;452: 604–609. 10.1038/nature06836 PubMed DOI
Han Y, Kodadek T. Peptides selected to bind the Gal80 repressor are potent transcriptional activation domains in yeast. J Biol Chem. 2000;275: 14979–14984. PubMed
Frangioni JV, LaRiccia LM, Cantley LC, Montminy MR. Minimal activators that bind to the KIX domain of p300/CBP identified by phage display screening. Nat Biotechnol. 2000;18: 1080–1085. 10.1038/80280 PubMed DOI
Bates CA, Pomerantz WC, Mapp AK. Transcriptional tools: Small molecules for modulating CBP KIX-dependent transcriptional activators. Biopolymers. 2011;95: 17–23. 10.1002/bip.21548 PubMed DOI PMC
Langlois C, Del Gatto A, Arseneault G, Lafrance-Vanasse J, De Simone M, Morse T, et al. Structure-based design of a potent artificial transactivation domain based on p53. J Am Chem Soc. 2012;134: 1715–1723. 10.1021/ja208999e PubMed DOI
Pomerantz WC, Wang N, Lipinski AK, Wang R, Cierpicki T, Mapp AK. Profiling the dynamic interfaces of fluorinated transcription complexes for ligand discovery and characterization. ACS Chem Biol. 2012;7: 1345–1350. 10.1021/cb3002733 PubMed DOI PMC
Wu Y, Reece RJ, Ptashne M. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 1996;15: 3951–3963. PubMed PMC
Lu X, Ansari AZ, Ptashne M. An artificial transcriptional activating region with unusual properties. Proc Natl Acad Sci USA. 2000;97: 1988–1992. 10.1073/pnas.040573197 PubMed DOI PMC
Ptashne M. The chemistry of regulation of genes and other things. J Biol Chem. 2014;289: 5417–5435. 10.1074/jbc.X114.547323 PubMed DOI PMC
Ma J, Ptashne M. A new class of yeast transcriptional activators. Cell. 1987;51: 113–119. PubMed
Ruden DM, Ma J, Li Y, Wood K, Ptashne M. Generating yeast transcriptional activators containing no yeast protein sequences. Nature. 1991;350: 250–252. 10.1038/350250a0 PubMed DOI
Ma J, Ptashne M. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell. 1987;48: 847–853. PubMed
Teufel DP, Freund SM, Bycroft M, Fersht AR. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci USA. 2007;104: 7009–7014. 10.1073/pnas.0702010104 PubMed DOI PMC
Gamper AM, Roeder RG. Multivalent Binding of p53 to the STAGA Complex Mediates Coactivator Recruitment after UV Damage. Mol Cell Biol. 2008;28: 2517–2527. 10.1128/MCB.01461-07 PubMed DOI PMC
Feng H, Jenkins LMM, Durell SR, Hayashi R, Mazur SJ, Cherry S, et al. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure. 2009;17: 202–210. 10.1016/j.str.2008.12.009 PubMed DOI PMC
Ferreon JC, Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE. Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Proc Natl Acad Sci USA. 2009;106: 6591–6596. 10.1073/pnas.0811023106 PubMed DOI PMC
Jenkins LMM, Yamaguchi H, Hayashi R, Cherry S, Tropea JE, Miller M, et al. Two distinct motifs within the p53 transactivation domain bind to the Taz2 domain of p300 and are differentially affected by phosphorylation. Biochemistry. 2009;48: 1244–1255. 10.1021/bi801716h PubMed DOI PMC
Brzovic PS, Heikaus CC, Kisselev L, Vernon R, Herbig E, Pacheco D, et al. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol Cell. 2011;44: 942–953. 10.1016/j.molcel.2011.11.008 PubMed DOI PMC
Fassler JS, Winston F. The Saccharomyces cerevisiae SPT13/GAL11 gene has both positive and negative regulatory roles in transcription. Mol Cell Biol. 1989;9: 5602–5609. PubMed PMC
Suzuki Y, Nogi Y, Abe A, Fukasawa T. GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol Cell Biol. 1992;12: 4806 PubMed PMC
Sakurai H, Hiraoka Y, Fukasawa T. Yeast GAL11 protein is a distinctive type transcription factor that enhances basal transcription in vitro. Proc Natl Acad Sci USA. 1993;90: 8382–8386. PubMed PMC
Lin J, Chen J, Elenbaas B, Levine AJ. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 1994;8: 1235–1246. PubMed
Jackson BM, Drysdale CM, Natarajan K, Hinnebusch AG. Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation. Mol Cell Biol. 1996;16: 5557–5571. PubMed PMC
Uesugi M, Nyanguile O, Lu H, Levine AJ, Verdine GL. Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science. 1997;277: 1310–1313. PubMed
Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol. 2001;21: 2249–2258. 10.1128/MCB.21.7.2249-2258.2001 PubMed DOI PMC
Jeong CJ, Yang SH, Xie Y, Zhang L, Johnston SA, Kodadek T. Evidence that Gal11 protein is a target of the Gal4 activation domain in the mediator. Biochemistry. 2001;40: 9421–9427. PubMed
De Guzman RN, Goto NK, Dyson HJ, Wright PE. Structural Basis for Cooperative Transcription Factor Binding to the CBP Coactivator. Journal of Molecular Biology. 2006;355: 1005–1013. 10.1016/j.jmb.2005.09.059 PubMed DOI
Majmudar CY, Wang B, Lum JK, Håkansson K, Mapp AK. A high-resolution interaction map of three transcriptional activation domains with a key coactivator from photo-cross-linking and multiplexed mass spectrometry. Angew Chem Int Ed Engl. 2009;48: 7021–7024. 10.1002/anie.200902669 PubMed DOI PMC
Jedidi I, Zhang F, Qiu H, Stahl SJ, Palmer I, Kaufman JD, et al. Activator Gcn4 employs multiple segments of Med15/Gal11, including the KIX domain, to recruit mediator to target genes in vivo. J Biol Chem. 2010;285: 2438–2455. 10.1074/jbc.M109.071589 PubMed DOI PMC
Arai M, Dyson HJ, Wright PE. Leu628 of the KIX domain of CBP is a key residue for the interaction with the MLL transactivation domain. FEBS Lett. 2010;584: 4500–4504. 10.1016/j.febslet.2010.10.024 PubMed DOI PMC
Wang N, Lodge JM, Fierke CA, Mapp AK. Dissecting allosteric effects of activator-coactivator complexes using a covalent small molecule ligand. Proc Natl Acad Sci USA. 2014;111: 12061–12066. 10.1073/pnas.1406033111 PubMed DOI PMC
Chang C, Gonzalez F, Rothermel B, Sun L, Johnston SA, Kodadek T. The Gal4 activation domain binds Sug2 protein, a proteasome component, in vivo and in vitro. J Biol Chem. 2001;276: 30956–30963. 10.1074/jbc.M102254200 PubMed DOI
Jabbur JR, Tabor AD, Cheng X, Wang H, Uesugi M, Lozano G, et al. Mdm-2 binding and TAF(II)31 recruitment is regulated by hydrogen bond disruption between the p53 residues Thr18 and Asp21. Oncogene. 2002;21: 7100–7113. 10.1038/sj.onc.1205856 PubMed DOI
Klein J, Nolden M, Sanders SL, Kirchner J, Weil PA, Melcher K. Use of a genetically introduced cross-linker to identify interaction sites of acidic activators within native transcription factor IID and SAGA. J Biol Chem. 2003;278: 6779–6786. 10.1074/jbc.M212514200 PubMed DOI
Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996;274: 948–953. PubMed
Liu W-L, Coleman RA, Ma E, Grob P, Yang JL, Zhang Y, et al. Structures of three distinct activator-TFIID complexes. Genes Dev. 2009;23: 1510–1521. 10.1101/gad.1790709 PubMed DOI PMC
Uesugi M, Verdine GL. The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Proc Natl Acad Sci USA. 1999;96: 14801–14806. PubMed PMC
Sandholzer J, Hoeth M, Piskacek M, Mayer H, de Martin R. A novel 9-amino-acid transactivation domain in the C-terminal part of Sox18. Biochem Biophys Res Commun. 2007;360: 370–374. 10.1016/j.bbrc.2007.06.095 PubMed DOI
Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE. Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains. EMBO J. 2009;28: 948–958. 10.1038/emboj.2009.30 PubMed DOI PMC
Courey AJ, Holtzman DA, Jackson SP, Tjian R. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell. 1989;59: 827–836. PubMed
Courey AJ, Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988;55: 887–898. PubMed
Pascal E, Tjian R. Different activation domains of Sp1 govern formation of multimers and mediate transcriptional synergism. Genes Dev. 1991;5: 1646–1656. PubMed
Myc 9aaTAD activation domain binds to mediator of transcription with superior high affinity
The evolution of the 9aaTAD domain in Sp2 proteins: inactivation with valines and intron reservoirs