Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31114897
PubMed Central
PMC6602463
DOI
10.1093/nar/gkz378
PII: 5494718
Knihovny.cz E-resources
- MeSH
- Algorithms * MeSH
- Benchmarking MeSH
- Protein Interaction Domains and Motifs MeSH
- Internet MeSH
- Protein Structure, Quaternary MeSH
- Humans MeSH
- Ligands MeSH
- Amino Acid Sequence MeSH
- Molecular Docking Simulation MeSH
- Protein Structure, Tertiary MeSH
- Carrier Proteins chemistry metabolism MeSH
- User-Computer Interface * MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Computational Biology methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ligands MeSH
- Carrier Proteins MeSH
Caver Web 1.0 is a web server for comprehensive analysis of protein tunnels and channels, and study of the ligands' transport through these transport pathways. Caver Web is the first interactive tool allowing both the analyses within a single graphical user interface. The server is built on top of the abundantly used tunnel detection tool Caver 3.02 and CaverDock 1.0 enabling the study of the ligand transport. The program is easy-to-use as the only required inputs are a protein structure for a tunnel identification and a list of ligands for the transport analysis. The automated guidance procedures assist the users to set up the calculation in a way to obtain biologically relevant results. The identified tunnels, their properties, energy profiles and trajectories for ligands' passages can be calculated and visualized. The tool is very fast (2-20 min per job) and is applicable even for virtual screening purposes. Its simple setup and comprehensive graphical user interface make the tool accessible for a broad scientific community. The server is freely available at https://loschmidt.chemi.muni.cz/caverweb.
Institute of Computer Science Masaryk University Brno Czech Republic
International Centre for Clinical Research St Anne's University Hospital Brno Brno Czech Republic
See more in PubMed
Calland P.-Y. On the structural complexity of a protein. Protein Eng. Des. Sel. 2003; 16:79–86. PubMed
Kingsley L.J., Lill M.A.. Substrate tunnels in enzymes: Structure–function relationships and computational methodology. Proteins Struct. Funct. Bioinf. 2015; 83:599–611. PubMed PMC
Biedermannová L., Prokop Z., Gora A., Chovancová E., Kovács M., Damborský J., Wade R.C.. A single mutation in a tunnel to the active site changes the mechanism and kinetics of product release in haloalkane dehalogenase LinB. J. Biol. Chem. 2012; 287:29062–29074. PubMed PMC
Richards F.M. Protein stability: still an unsolved problem. Cell. Mol. Life Sci. 1997; 53:790–802. PubMed PMC
Kaushik S., Prokop Z., Damborsky J., Chaloupkova R.. Kinetics of binding of fluorescent ligands to enzymes with engineered access tunnels. FEBS J. 2017; 284:134–148. PubMed
Kaushik S., Marques S.M., Khirsariya P., Paruch K., Libichova L., Brezovsky J., Prokop Z., Chaloupkova R., Damborsky J.. Impact of the access tunnel engineering on catalysis is strictly ligand-specific. FEBS J. 2018; 285:1456–1476. PubMed
Brezovsky J., Babkova P., Degtjarik O., Fortova A., Gora A., Iermak I., Rezacova P., Dvorak P., Smatanova I.K., Prokop Z. et al. .. Engineering a de Novo Transport Tunnel. ACS Catal. 2016; 6:7597–7610.
Liskova V., Bednar D., Prudnikova T., Rezacova P., Koudelakova T., Sebestova E., Smatanova I.K., Brezovsky J., Chaloupkova R., Damborsky J.. Balancing the stability–activity trade-off by fine-tuning dehalogenase access tunnels. ChemCatChem. 2015; 7:648–659.
Schmidt M., Nienhaus K., Pahl R., Krasselt A., Anderson S., Parak F., Nienhaus G.U., Šrajer V.. Ligand migration pathway and protein dynamics in myoglobin: a time-resolved crystallographic study on L29W MbCO. Proc. Natl Acad. Sci. U.S.A. 2005; 102:11704–11709. PubMed PMC
Šrajer V., Ren Z., Teng T.-Y., Schmidt M., Ursby T., Bourgeois D., Pradervand C., Schildkamp W., Wulff M., Moffat K.. Protein conformational relaxation and ligand migration in myoglobin: a nanosecond to millisecond molecular movie from Time-Resolved laue X-ray diffraction. Biochemistry. 2001; 40:13802–13815. PubMed
Brezovsky J., Chovancova E., Gora A., Pavelka A., Biedermannova L., Damborsky J.. Software tools for identification, visualization and analysis of protein tunnels and channels. Biotechnol. Adv. 2013; 31:38–49. PubMed
Pellegrini-Calace M., Maiwald T., Thornton J.M.. PoreWalker: a novel tool for the identification and characterization of channels in transmembrane proteins from their Three-Dimensional structure. PLoS Comput. Biol. 2009; 5:e1000440. PubMed PMC
Voss N.R., Gerstein M.. 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res. 2010; 38:W555–W562. PubMed PMC
Oliveira S.H., Ferraz F.A., Honorato R.V., Xavier-Neto J., Sobreira T.J., de Oliveira P.S.. KVFinder: steered identification of protein cavities as a PyMOL plugin. BMC Bioinformatics. 2014; 15:197. PubMed PMC
Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., Gora A., Sustr V., Klvana M., Medek P. et al. .. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 2012; 8:e1002708. PubMed PMC
Yaffe E., Fishelovitch D., Wolfson H.J., Halperin D., Nussinov R.. MolAxis: a server for identification of channels in macromolecules. Nucleic Acids Res. 2008; 36:W210–W215. PubMed PMC
Sehnal D., Svobodová Vařeková R., Berka K., Pravda L., Navrátilová V., Banáš P., Ionescu C.-M., Otyepka M., Koča J.. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J. Cheminformatics. 2013; 5:39. PubMed PMC
Long D., Mu Y., Yang D.. Molecular dynamics simulation of ligand dissociation from liver fatty acid binding protein. PLoS One. 2009; 4:e6081. PubMed PMC
Gu Y., Shrivastava I.H., Amara S.G., Bahar I.. Molecular simulations elucidate the substrate translocation pathway in a glutamate transporter. Proc. Natl Acad. Sci. U.S.A. 2009; 106:2589–2594. PubMed PMC
Kaus J.W., McCammon J.A.. Enhanced ligand sampling for relative protein–ligand binding free energy calculations. J. Phys. Chem. B. 2015; 119:6190–6197. PubMed PMC
Doerr S., De Fabritiis G.. On-the-Fly learning and sampling of ligand binding by high-throughput molecular simulations. J. Chem. Theory Comput. 2014; 10:2064–2069. PubMed
Kokh D.B., Amaral M., Bomke J., Grädler U., Musil D., Buchstaller H.-P., Dreyer M.K., Frech M., Lowinski M., Vallee F. et al. .. Estimation of Drug-Target residence times by τ-Random acceleration molecular dynamics simulations. J. Chem. Theory Comput. 2018; 14:3859–3869. PubMed
Chen L.Y. Hybrid steered molecular dynamics approach to computing absolute binding free energy of Ligand–Protein Complexes: A brute force approach that is fast and accurate. J. Chem. Theory Comput. 2015; 11:1928–1938. PubMed PMC
Do P.-C., Lee E.H., Le L.. Steered molecular dynamics simulation in rational drug design. J. Chem. Inf. Model. 2018; 58:1473–1482. PubMed
Skovstrup S., David L., Taboureau O., Jørgensen F.S.. A steered molecular dynamics study of binding and translocation processes in the GABA transporter. PLoS One. 2012; 7:e39360. PubMed PMC
Zhang Y., Voth G.A.. A combined metadynamics and umbrella sampling method for the calculation of ion permeation free energy profiles. J. Chem. Theory Comput. 2011; 7:2277–2283. PubMed PMC
Marques S.M., Bednar D., Damborsky J.. Computational study of protein-ligand unbinding for enzyme engineering. Front. Chem. 2019; 6:650. PubMed PMC
Furini S., Domene C.. Computational studies of transport in ion channels using metadynamics. Biochim. Biophys. Acta (BBA) - Biomembranes. 2016; 1858:1733–1740. PubMed
Filipovič J., Vávra O., Plhák J., Bednář D., Marques S.M., Brezovský J., Matyska L., Damborský J.. CaverDock: a novel method for the fast analysis of ligand transport. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2019; doi:10.1109/TCBB.2019.2907492. PubMed
Lee P.-H., Kuo K.-L., Chu P.-Y., Liu E.M., Lin J.-H.. SLITHER: a web server for generating contiguous conformations of substrate molecules entering into deep active sites of proteins or migrating through channels in membrane transporters. Nucleic Acids Res. 2009; 37:W559–W564. PubMed PMC
Cortés J., Siméon T., Ruiz de Angulo V., Guieysse D., Remaud-Siméon M., Tran V.. A path planning approach for computing large-amplitude motions of flexible molecules. Bioinformatics. 2005; 21:i116–i125. PubMed
Cortés J., Le D.T., Iehl R., Siméon T.. Simulating ligand-induced conformational changes in proteins using a mechanical disassembly method. Phys. Chem. Chem. Phys. 2010; 12:8268–8276. PubMed
Burley S.K., Berman H.M., Bhikadiya C., Bi C., Chen L., Costanzo L.D., Christie C., Duarte J.M., Dutta S., Feng Z. et al. .. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019; 47:D520–D528. PubMed PMC
Le Guilloux V., Schmidtke P., Tuffery P.. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009; 10:168. PubMed PMC
Ribeiro A.J.M., Holliday G.L., Furnham N., Tyzack J.D., Ferris K., Thornton J.M.. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. Nucleic Acids Res. 2018; 46:D618–D623. PubMed PMC
The UniProt Consortium UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018; 46:2699–2699. PubMed PMC
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J.. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 2009; 30:2785–2791. PubMed PMC
Trott O., Olson A.J.. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010; 31:455–461. PubMed PMC
Hanson R.M., Prilusky J., Renjian Z., Nakane T., Sussman J.L.. JSmol and the next-generation web-based representation of 3D molecular structure as applied to proteopedia. Isr. J. Chem. 2013; 53:207–216.
Jurcik A., Bednar D., Byska J., Marques S.M., Furmanova K., Daniel L., Kokkonen P., Brezovsky J., Strnad O., Stourac J. et al. .. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics. 2018; 34:3586–3588. PubMed PMC
O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R.. Open Babel: an open chemical toolbox. J. Cheminformatics. 2011; 3:33. PubMed PMC
Sterling T., Irwin J.J.. ZINC 15 – ligand discovery for everyone. J. Chem. Inf. Model. 2015; 55:2324–2337. PubMed PMC
Bienfait B., Ertl P.. JSME: a free molecule editor in JavaScript. J. Cheminformatics. 2013; 5:24. PubMed PMC
Marques S.M., Daniel L., Buryska T., Prokop Z., Brezovsky J., Damborsky J.. Enzyme tunnels and gates as relevant targets in drug design. Med. Res. Rev. 2017; 37:1095–1139. PubMed
Koudelakova T., Chovancova E., Brezovsky J., Monincova M., Fortova A., Jarkovsky J., Damborsky J.. Substrate specificity of haloalkane dehalogenases. Biochem. J. 2011; 435:345–354. PubMed
Gehret J.J., Gu L., Geders T.W., Brown W.C., Gerwick L., Gerwick W.H., Sherman D.H., Smith J.L.. Structure and activity of DmmA, a marine haloalkane dehalogenase. Protein Sci. 2012; 21:239–248. PubMed PMC
Kokkonen P., Bednar D., Dockalova V., Prokop Z., Damborsky J.. Conformational changes allow processing of bulky substrates by a haloalkane dehalogenase with a small and buried active site. J. Biol. Chem. 2018; 293:11505–11512. PubMed PMC
Haddad A., Davis M., Lagman R.. The pharmacological importance of cytochrome CYP3A4 in the palliation of symptoms: review and recommendations for avoiding adverse drug interactions. Support. Care Cancer. 2007; 15:251–257. PubMed
Baylon J.L., Lenov I.L., Sligar S.G., Tajkhorshid E.. Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J. Am. Chem. Soc. 2013; 135:8542–8551. PubMed PMC
Banegas-Luna A.-J., Cerón-Carrasco J.P., Pérez-Sánchez H.. A review of ligand-based virtual screening web tools and screening algorithms in large molecular databases in the age of big data. Future Med. Chem. 2018; 10:2641–2658. PubMed
Pravda L., Sehnal D., Toušek D., Navrátilová V., Bazgier V., Berka K., Svobodová Vareková R., Koca J., Otyepka M.. MOLEonline: a web-based tool for analyzing channels, tunnels and pores. Nucleic Acids Res. 2018; 46:W368–W373. PubMed PMC
Kim J.K., Cho Y., Lee M., Laskowski R.A., Ryu S.E., Sugihara K., Kim D.S.. BetaCavityWeb: a webserver for molecular voids and channels. Nucleic Acids Res. 2015; 43:W413–W418. PubMed PMC
Masood T.B., Sandhya S., Chandra N., Natarajan V.. CHEXVIS: a tool for molecular channel extraction and visualization. BMC Bioinformatics. 2015; 16:119–138. PubMed PMC
Gutmanas A., Alhroub Y., Battle G.M., Berrisford J.M., Bochet E., Conroy M.J., Dana J.M., Fernandez Montecelo M.A., van Ginkel G., Gore S.P. et al. .. PDBe: Protein Data Bank in Europe. Nucleic Acids Res. 2014; 42:D285–D291. PubMed PMC
ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era
Illuminating the mechanism and allosteric behavior of NanoLuc luciferase
Fully automated virtual screening pipeline of FDA-approved drugs using Caver Web
Structural Analysis of the Ancestral Haloalkane Dehalogenase AncLinB-DmbA
Simulation of Ligand Transport in Receptors Using CaverDock
Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst