Structural Characterization of Unusual Fatty Acid Methyl Esters with Double and Triple Bonds Using HPLC/APCI-MS2 with Acetonitrile In-Source Derivatization
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund, OP RDE
10119
Charles University Grant Agency
SVV 260560
Charles University in Prague
PubMed
34770878
PubMed Central
PMC8588306
DOI
10.3390/molecules26216468
PII: molecules26216468
Knihovny.cz E-zdroje
- Klíčová slova
- acetonitrile-related adducts, acetylenic lipids, double and triple bond localization, in-source derivatization, mass spectrometry,
- MeSH
- acetonitrily chemie MeSH
- estery chemie izolace a purifikace MeSH
- hmotnostní spektrometrie MeSH
- mastné kyseliny chemie izolace a purifikace MeSH
- molekulární struktura MeSH
- včely chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetonitrile MeSH Prohlížeč
- acetonitrily MeSH
- estery MeSH
- mastné kyseliny MeSH
Double and triple bonds have significant effects on the biological activities of lipids. Determining multiple bond positions in their molecules by mass spectrometry usually requires chemical derivatization. This work presents an HPLC/MS method for pinpointing the double and triple bonds in fatty acids. Fatty acid methyl esters were separated by reversed-phase HPLC with an acetonitrile mobile phase. In the APCI source, acetonitrile formed reactive species, which added to double and triple bonds to form [M + C3H5N]+• ions. Their collisional activation in an ion trap provided fragments helpful in localizing the multiple bond positions. This approach was applied to fatty acids with isolated, cumulated, and conjugated double bonds and triple bonds. The fatty acids were isolated from the fat body of early-nesting bumblebee Bombus pratorum and seeds or seed oils of Punicum granatum, Marrubium vulgare, and Santalum album. Using the method, the presence of the known fatty acids was confirmed, and new ones were discovered.
Zobrazit více v PubMed
Dembitsky V.M. Anticancer activity of natural and synthetic acetylenic lipids. Lipids. 2006;41:883–924. doi: 10.1007/s11745-006-5044-3. PubMed DOI
Li X.-C., Jacob M.R., Khan S.I., Ashfaq M.K., Babu K.S., Agarwal A.K., El Sohly H.N., Manly S.P., Clark A.M. Potent In Vitro Antifungal Activities of Naturally Occurring Acetylenic Acids. Antimicrob. Agents Chemother. 2008;52:2442–2448. doi: 10.1128/AAC.01297-07. PubMed DOI PMC
Vetter W., Walther W., Vecchi M. Pyrrolidide als Derivate für die Strukturaufklärung aliphatischer und alicyclischer Carbonsäuren mittels Massenspektrometrie. Helv. Chim. Acta. 1971;54:1599–1605. doi: 10.1002/hlca.19710540611. DOI
Yu Q.T., Liu B.N., Zhang J.Y., Huang Z.H. Location of methyl branchings in fatty acids: Fatty acids in uropygial secretion of shanghai duck by GC-MS of 4,4-dimethyloxazoline derivatives. Lipids. 1989;24:160. doi: 10.1007/BF02535256. PubMed DOI
Francis G.W., Veland K. Alkylthiolation for the determination of double-bond positions in linear alkenes. J. Chromatogr. A. 1987;219:379–384. doi: 10.1016/S0021-9673(00)80381-7. DOI
Ma X., Chong L., Tian R., Shi R., Hu T., Ouyang Z., Xia Y. Identification and quantitation of lipid C=C location isomers: A shotgun lipidomics approach enabled by photochemical reaction. Proc. Natl. Acad. Sci. USA. 2016;113:2573–2578. doi: 10.1073/pnas.1523356113. PubMed DOI PMC
Murphy R.C., Okuno T., Johnson C.A., Barkley R.M. Determination of Double Bond Positions in Polyunsaturated Fatty Acids Using the Photochemical Paternò-Büchi Reaction with Acetone and Tandem Mass Spectrometry. Anal. Chem. 2017;89:8545–8553. doi: 10.1021/acs.analchem.7b02375. PubMed DOI
Xie X., Xia Y. Analysis of Conjugated Fatty Acid Isomers by the Paternò-Büchi Reaction and Trapped Ion Mobility Mass Spectrometry. Anal. Chem. 2019;91:7173–7180. doi: 10.1021/acs.analchem.9b00374. PubMed DOI
Zhao Y., Zhao H., Zhao X., Jia J., Ma Q., Zhang S., Zhang X., Chiba H., Hui S.-P., Ma X. Identification and Quantitation of C=C Location Isomers of Unsaturated Fatty Acids by Epoxidation Reaction and Tandem Mass Spectrometry. Anal. Chem. 2017;89:10270–10278. doi: 10.1021/acs.analchem.7b01870. PubMed DOI
Song C., Gao D., Li S., Liu L., Chen X., Jiang Y. Determination and quantification of fatty acid C=C isomers by epoxidation reaction and liquid chromatography-mass spectrometry. Anal. Chim. Acta. 2019;1086:82–89. doi: 10.1016/j.aca.2019.08.023. PubMed DOI
Wan L., Gong G., Liang H., Huang G. In situ analysis of unsaturated fatty acids in human serum by negative-ion paper spray mass spectrometry. Anal. Chim. Acta. 2019;1075:120–127. doi: 10.1016/j.aca.2019.05.055. PubMed DOI
Takashima S., Toyoshi K., Yamamoto T., Shimozawa N. Positional determination of the carbon–carbon double bonds in unsaturated fatty acids mediated by solvent plasmatization using LC–MS. Sci. Rep. 2020;10:12988. doi: 10.1038/s41598-020-69833-y. PubMed DOI PMC
Yang W.-C., Adamec A.J., Regnier F.E. Enhancement of the LC/MS Analysis of Fatty Acids through Derivatization and Stable Isotope Coding. Anal. Chem. 2007;79:5150–5157. doi: 10.1021/ac070311t. PubMed DOI
Yang K., Dilthey B.G., Gross R.W. Identification and Quantitation of Fatty Acid Double Bond Positional Isomers: A Shotgun Lipidomics Approach Using Charge-Switch Derivatization. Anal. Chem. 2013;85:9742–9750. doi: 10.1021/ac402104u. PubMed DOI PMC
Thomas M.C., Mitchell T.W., Harman D.G., Deeley J.M., Murphy R.C., Blanksby S.J. Elucidation of Double Bond Position in Unsaturated Lipids by Ozone Electrospray Ionization Mass Spectrometry. Anal. Chem. 2007;79:5013–5022. doi: 10.1021/ac0702185. PubMed DOI PMC
Mitchell T.W., Pham H., Thomas M.C., Blanksby S.J. Identification of double bond position in lipids: From GC to OzID. J. Chromatogr. B. 2009;877:2722–2735. doi: 10.1016/j.jchromb.2009.01.017. PubMed DOI
Poad B.L.J., Marshall D.L., Harazim E., Gupta R., Narreddula V.R., Young R.S.E., Duchoslav E., Campbell J.L., Broadbent J.A., Cvačka J., et al. Combining Charge-Switch Derivatization with Ozone-Induced Dissociation for Fatty Acid Analysis. J. Am. Soc. Mass Spectrom. 2019;30:2135–2143. doi: 10.1007/s13361-019-02285-5. PubMed DOI
Xu Y., Brenna J.T. Atmospheric Pressure Covalent Adduct Chemical Ionization Tandem Mass Spectrometry for Double Bond Localization in Monoene- and Diene-Containing Triacylglycerols. Anal. Chem. 2007;79:2525–2536. doi: 10.1021/ac062055a. PubMed DOI PMC
Vrkoslav V., Háková M., Pecková K., Urbanová K., Cvačka J. Localization of Double Bonds in Wax Esters by High-Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry Utilizing the Fragmentation of Acetonitrile-Related Adducts. Anal. Chem. 2011;83:2978–2986. doi: 10.1021/ac1030682. PubMed DOI
Vrkoslav V., Cvačka J. Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A. 2012;1259:244–250. doi: 10.1016/j.chroma.2012.04.055. PubMed DOI
Háková E., Vrkoslav V., Mikova R., Schwarzová K., Bosakova Z., Cvačka J. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry. Anal. Bioanal. Chem. 2015;407:5175–5188. doi: 10.1007/s00216-015-8537-1. PubMed DOI
Šubčíková L., Hoskovec M., Vrkoslav V., Čmelíková T., Háková E., Míková R., Coufal P., Doležal A., Plavka R., Cvačka J. Analysis of 1,2-diol diesters in vernix caseosa by high-performance liquid chromatography—Atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A. 2015;1378:8–18. doi: 10.1016/j.chroma.2014.11.075. PubMed DOI
Kalužíková A., Vrkoslav V., Harazim E., Hoskovec M., Plavka R., Buděšínský M., Bosáková Z., Cvačka J. Cholesteryl esters of ω-(O-acyl)-hydroxy fatty acids in vernix caseosa. J. Lipid Res. 2017;58:1579–1590. doi: 10.1194/jlr.M075333. PubMed DOI PMC
Van Pelt C.K., Carpenter B.K., Brenna J.T. Studies of structure and mechanism in acetonitrile chemical ionization tandem mass spectrometry of polyunsaturated fatty acid methyl esters. J. Am. Soc. Mass Spectrom. 1999;10:1253–1262. doi: 10.1016/S1044-0305(99)00109-9. PubMed DOI
Michaud A.L., Diau G.-Y., Abril R., Brenna J. Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry. Anal. Biochem. 2002;307:348–360. doi: 10.1016/S0003-2697(02)00037-4. PubMed DOI
Michaud A.L., Yurawecz M.P., Delmonte P., Corl B.A., Bauman D.E., Brenna J.T. Identification and Characterization of Conjugated Fatty Acid Methyl Esters of Mixed Double Bond Geometry by Acetonitrile Chemical Ionization Tandem Mass Spectrometry. Anal. Chem. 2003;75:4925–4930. doi: 10.1021/ac034221+. PubMed DOI
Lawrence P., Brenna J.T. Acetonitrile Covalent Adduct Chemical Ionization Mass Spectrometry for Double Bond Localization in Non-Methylene-Interrupted Polyene Fatty Acid Methyl Esters. Anal. Chem. 2006;78:1312–1317. doi: 10.1021/ac0516584. PubMed DOI
Barthélemy M., Elie N., Pellissier L., Wolfender J.-L., Stien D., Touboul D., Eparvier V. Structural Identification of Antibacterial Lipids from Amazonian Palm Tree Endophytes through the Molecular Network Approach. Int. J. Mol. Sci. 2019;20:2006. doi: 10.3390/ijms20082006. PubMed DOI PMC
Spitzer V., Marx F., Maia J.G., Pfeilsticker K. Curupira tefeensis II: Occurrence of Acetylenic Fatty Acids. Fette Seifen Anstrichm. 1991;93:169–174. doi: 10.1002/lipi.19910930502. DOI
Spitzer V., Bordignon S.A.D.L., Schenkel E.P., Marx F. Identification of nine acetylenic fatty acids, 9-hydroxystearic acid and 9,10-epoxystearic acid in the seed oil of Jodina rhombifolia Hook et Arn. (Santalaceae) J. Am. Oil Chem. Soc. 1994;71:1343–1348. doi: 10.1007/BF02541352. DOI
Spitzer V. The mass spectra of the 4,4-dimethyloxazoline derivatives of some conjugated hydroxy ene-yne C17 and C18 fatty acids. J. Am. Oil Chem. Soc. 1996;73:489–492. doi: 10.1007/BF02523924. DOI
Spitzer V., Tomberg W., Hartmann R., Aichholz R. Analysis of the seed oil of Heisteria silvanii (Olacaceae)—A rich source of a novel C18 acetylenic fatty acid. Lipids. 1997;32:1189–1200. doi: 10.1007/s11745-997-0153-6. PubMed DOI
Gurr M.I., Harwood J.L., Frayn K.N., Murphy D.J., Michell R.H. Lipids: Biochemistry, Biotechnology and Health. 6th ed. Wiley-Blackwell; Hoboken, NJ, USA: 2016.
Litchfield C., Greenberg A.J., Noto G., Morales R.W. Unusually high levels of C24−C30 fatty acids in sponges of the class Demospongiae. Lipids. 1976;11:567–570. doi: 10.1007/BF02532903. PubMed DOI
Morales R.W., Litchfield C. Incorporation of 1-14C-Acetate into C26 fatty acids of the marine sponge Microciona prolifera. Lipids. 1977;12:570–576. doi: 10.1007/BF02533383. PubMed DOI
Christie W.W., Brechany E.Y., Stefanov K., Popov S. The fatty acids of the sponge Dysidea fragilis from the black sea. Lipids. 1992;27:640–644. doi: 10.1007/BF02536125. DOI
Nechev J., Christie W.W., Robaina R., De Diego F., Popov S., Stefanov K. Chemical composition of the sponge Hymeniacidon sanguinea from the Canary Islands. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2004;137:365–374. doi: 10.1016/j.cbpb.2003.10.016. PubMed DOI
Kawashima H. Unusual minor nonmethylene-interrupted di-, tri-, and tetraenoic fatty acids in limpet gonads. Lipids. 2005;40:627–630. doi: 10.1007/s11745-005-1424-y. PubMed DOI
Zhukova N.V. Lipid Classes and Fatty Acid Composition of the Tropical Nudibranch Mollusks Chromodoris sp. and Phyllidia coelestis. Lipids. 2007;42:1169–1175. doi: 10.1007/s11745-007-3123-8. PubMed DOI
Carballeira N. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog. Lipid Res. 2008;47:50–61. doi: 10.1016/j.plipres.2007.10.002. PubMed DOI PMC
Cvačka J., Kofroňová E., Vašíčková S., Stránský K., Jiroš P., Hovorka O., Kindl J., Valterová I. Unusual Fatty Acids in the Fat Body of the Early Nesting Bumblebee, Bombus pratorum. Lipids. 2008;43:441–450. doi: 10.1007/s11745-008-3174-5. PubMed DOI
Sehat N., Kramer J.K.G., Mossoba M.M., Yurawecz M.P., Roach J.A.G., Eulitz K., Morehouse K.M., Ku Y. Identification of conjugated linoleic acid isomers in cheese by gas chromatography, silver ion high performance liquid chromatography and mass spectral reconstructed ion profiles. Comparison of chromatographic elution sequences. Lipids. 1998;33:963–971. doi: 10.1007/s11745-998-0293-8. PubMed DOI
Yurawecz M.P., Roach J.A.G., Sehat N., Mossoba M.M., Kramer J.K.G., Fritsche J., Steinhart H., Ku Y. A new conjugated linoleic acid isomer, 7 trans, 9 cis-octadecadienoic acid, in cow milk, cheese, beef and human milk and adipose tissue. Lipids. 1998;33:803–809. doi: 10.1007/s11745-998-0273-z. PubMed DOI
Ip C., Chin S.F., Scimeca J.A., Pariza M.W. Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res. 1991;51:6118–6124. PubMed
Pariza M.W., Park Y., Cook M.E. The biologically active isomers of conjugated linoleic acid. Prog. Lipid Res. 2001;40:283–298. doi: 10.1016/S0163-7827(01)00008-X. PubMed DOI
O’Connor R., Heinzelman D., Freeman A., Pack F. Spectrophotometric Determination of Alpha-Eleostearic Acid in Freshly Extracted Tung Oil Determination of Extinction Coefficients in Oil Solvents. Ind. Eng. Chem. Anal. Ed. 1945;17:467–470. doi: 10.1021/i560144a001. DOI
Özgül-Yücel S. Determination of conjugated linolenic acid content of selected oil seeds grown in Turkey. J. Am. Oil Chem. Soc. 2005;82:893–897. doi: 10.1007/s11746-005-1161-7. DOI
Hopkins C.Y., Chisholm M.J. A survey of the conjugated fatty acids of seed oils. J. Am. Oil Chem. Soc. 1968;45:176–182. doi: 10.1007/BF02915346. PubMed DOI
Chisholm M.J., Hopkins C.Y. Conjugated fatty acids of tragopogon and calendula seed oils. Can. J. Chem. 1960;38:2500–2507. doi: 10.1139/v60-339. DOI
Toyama Y., Tsuchiya T. A new stereoisomer of eleostearic acid in pomegranate seed oil. J. Soc. Chem. Ind. Jpn. B. 1935;38:182–185.
Cao Y., Gao H.-L., Chen J.-N., Chen Z.-Y., Yang L. Identification and Characterization of Conjugated Linolenic Acid Isomers by Ag+-HPLC and NMR. J. Agric. Food Chem. 2006;54:9004–9009. doi: 10.1021/jf0616199. PubMed DOI
Saha S.S., Patra M., Ghosh M. In vitro antioxidant study of vegetable oils containing conjugated linolenic acid isomers. LWT. 2012;46:10–15. doi: 10.1016/j.lwt.2011.11.008. DOI
Aruna P., Venkataramanamma D., Singh A.K., Singh R. Health Benefits of Punicic Acid: A Review. Compr. Rev. Food Sci. Food Saf. 2015;15:16–27. doi: 10.1111/1541-4337.12171. PubMed DOI
De Melo I.L.P., de Carvalho E.B.T., de Oliveira e Silva A.M., Yoshime L.T., Sattler J.A.G., Pavan R.T., Mancini-Filho J. Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.) Food Sci. Technol. 2016;36:132–139. doi: 10.1590/1678-457X.0069. DOI
Costa A., Silva L., Torres A. Chemical composition of commercial cold-pressed pomegranate (Punica granatum) seed oil from Turkey and Israel, and the use of bioactive compounds for samples’ origin preliminary discrimination. J. Food Compos. Anal. 2019;75:8–16. doi: 10.1016/j.jfca.2018.09.004. DOI
Benjamin S., Spener F. Conjugated linoleic acids as functional food: An insight into their health benefits. Nutr. Metab. 2009;6:36. doi: 10.1186/1743-7075-6-36. PubMed DOI PMC
Dubey K.K.D., Sharma G., Kumar A. Conjugated Linolenic Acids: Implication in Cancer. J. Agric. Food Chem. 2019;67:6091–6101. doi: 10.1021/acs.jafc.9b01379. PubMed DOI
Badami R., Patil K. Structure and occurrence of unusual fatty acids in minor seed oils. Prog. Lipid Res. 1980;19:119–153. doi: 10.1016/0163-7827(80)90002-8. PubMed DOI
Dembitsky V.M., Maoka T. Allenic and cumulenic lipids. Prog. Lipid Res. 2007;46:328–375. doi: 10.1016/j.plipres.2007.07.001. PubMed DOI
Bagby M.O., Smith C.R., Wolff I.A. Laballenic Acid. A New Allenic Acid from Leonotis nepetaefolia Seed Oil1. J. Org. Chem. 1965;30:4227–4229. doi: 10.1021/jo01023a055. DOI
Aitzetmüller D.U.P.D.K., Tsevegsüren N., Vosmann K. A New Allenic Fatty Acid in Phlomis (Lamiaceae) Seed Oil. Fette Seifen Anstrichm. 1997;99:74–78. doi: 10.1002/lipi.19970990304. DOI
Mikolajczak K.L., Rogers M.F., Smith C.R., Wolff I.A. An octadecatrienoic acid from Lamium purpureum L. seed oil containing 5,6-allenic and trans-16-olefinic unsaturation. Biochem. J. 1967;105:1245–1249. doi: 10.1042/bj1051245. PubMed DOI PMC
Smith C. Occurrence of unusual fatty acids in plants. Prog. Chem. Fats Other Lipids. 1971;11:137–177. doi: 10.1016/0079-6832(71)90005-X. DOI
Bohlmann F., Burkhardt T., Zdero C. Naturally Occurring Acetylenes. Academic Press; London, UK: 1973. pp. 1–222.
Huang Y., Zhang S.-B., Chen H.-P., Zhao Z.-Z., Li Z.-H., Feng T., Liu J.-K. New acetylenic acids and derivatives from the Basidiomycete Craterellus lutescens (Cantharellaceae) Fitoterapia. 2016;115:177–181. doi: 10.1016/j.fitote.2016.10.006. PubMed DOI
Fatope M.O., Adoum O.A., Takeda Y. C18 Acetylenic Fatty Acids of Ximenia americana with Potential Pesticidal Activity. J. Agric. Food Chem. 2000;48:1872–1874. doi: 10.1021/jf990550k. PubMed DOI
Li X.-C., Jacob M.R., ElSohly H.N., Nagle D.G., Smillie T.J., Walker L.A., Clark A.M. Acetylenic Acids Inhibiting Azole-Resistant Candida albicans from Pentagonia gigantifolia. J. Nat. Prod. 2003;66:1132–1135. doi: 10.1021/np030196r. PubMed DOI
Carballeira N.M., Sanabria D., Cruz C., Parang K., Wan B., Franzblau S. 2,6-hexadecadiynoic acid and 2,6-nonadecadiynoic acid: Novel synthesized acetylenic fatty acids as potent antifungal agents. Lipids. 2006;41:507–511. doi: 10.1007/s11745-006-5124-4. PubMed DOI PMC
Xu T., Tripathi S.K., Feng Q., Lorenz M., Wright M.A., Jacob M.R., Mask M.M., Baerson S.R., Li X.-C., Clark A.M., et al. A Potent Plant-Derived Antifungal Acetylenic Acid Mediates Its Activity by Interfering with Fatty Acid Homeostasis. Antimicrob. Agents Chemother. 2012;56:2894–2907. doi: 10.1128/AAC.05663-11. PubMed DOI PMC
Kilimnik A., Kuklev D.V., Dembitsky V.M. Antitumor Acetylenic Lipids. Mathews J. Pharm. Sci. 2016;1:5.
Aitzetmüller K., Matthäus B., Friedrich H. A new database for seed oil fatty acids—The database SOFA. Eur. J. Lipid Sci. Technol. 2003;105:92–103. doi: 10.1002/ejlt.200390022. DOI
Aitzetmüller K. Santalbic acid in the plant kingdom. Plant Syst. Evol. 2012;298:1609–1617. doi: 10.1007/s00606-012-0678-5. DOI
Neff W.E., Adlof R.O., Konishi H., Weisleder D. High-performance liquid chromatography of the triacylglycerols of Vernonia galamensis and Crepis alpina seed oils. J. Am. Oil Chem. Soc. 1993;70:449–455. doi: 10.1007/BF02542574. DOI
Neff W.E., Adlof R.O., El-Agaimy M. Silver ion high-performance liquid chromatography of the triacylglycerols of Crepis alpina seed oil. J. Am. Oil Chem. Soc. 1994;71:853–855. doi: 10.1007/BF02540461. DOI
Sun J.-Y., Guo X., Smith M.A. Identification of Crepenynic Acid in the Seed Oil of Atractylodes lancea and A. macrocephala. J. Am. Oil Chem. Soc. 2017;94:655–660. doi: 10.1007/s11746-017-2974-2. DOI
Anderson W.H., Gellerman J.L. Acetylenic acids from mosses. Lipids. 1975;10:501–502. doi: 10.1007/BF02532437. PubMed DOI
Dembitsky V.M., Řezanka T. Distribution of acetylenic acids and polar lipids in some aquatic bryophytes. Phytochemistry. 1995;40:93–97. doi: 10.1016/0031-9422(95)00188-D. DOI
Kalacheva G.S., Sushchik N.N., Gladyshev M.I., Makhutova O.N. Seasonal dynamics of fatty acids in the lipids of water moss Fontinalis antipyretica from the Yenisei River. Russ. J. Plant Physiol. 2009;56:795–807. doi: 10.1134/S1021443709060090. DOI
Pejin B., Bianco A., Newmaster S., Sabovljevic M., Vujisić L., Tešević V., Vajs V., De Rosa S. Fatty acids of Rhodobryum ontariense (Bryaceae) Nat. Prod. Res. 2011;26:696–702. doi: 10.1080/14786419.2010.550580. PubMed DOI
Aveldano M.I., VanRollins M., Horrocks L.A. Separation and Quantitation of Free Fatty Acids and Fatty Acid Methyl Esters by Reverse Phase High Pressure Liquid Chromatograph. J. Lipid Res. 1983;24:83–93. doi: 10.1016/S0022-2275(20)38027-5. PubMed DOI
Rao M.S., Hidajat K., Ching C.B. Reversed-Phase HPLC: The Separation Method for the Characterization and Purification of Long Chain Polyunsaturated Fatty Acids--A Review. J. Chromatogr. Sci. 1995;33:9–21. doi: 10.1093/chromsci/33.1.9. DOI
Carballeira N., Shalabi F., Cruz C., Rodriguez J., Rodríguez E. Comparative study of the fatty acid composition of sponges of the genus Ircinia. Identification of the new 23-methyl-5,9-tetracosadienoic acid. Comp. Biochem. Physiol. Part B Comp. Biochem. 1991;100:489–492. doi: 10.1016/0305-0491(91)90209-V. PubMed DOI
Christie W.W., Brechany E.Y., Marekov I.N., Stefanov K.L., Andreev S.N. The fatty acids of the sponge Hymeniacidon sanguinea from the Black Sea. Comp. Biochem. Physiol. Part B Comp. Biochem. 1994;109:245–252. doi: 10.1016/0305-0491(94)90008-6. DOI
Makarieva T.N., Santalova E.A., Gorshkova I.A., Dmitrenok A.S., Guzii A.G., Gorbach V.I., Svetashev V.I., Stonik V.A. A new cytotoxic fatty acid (5Z,9Z)-22-methyl-5,9-tetracosadienoic acid and the sterols from the far Eastern sponge Geodinella robusta. Lipids. 2002;37:75–80. doi: 10.1007/s11745-002-0866-6. PubMed DOI
Kullenberg B., Bergström G., Ställberg-Stenhagen S. Volatile components of the marking secretion of male bumblebees. Acta Chim. Scand. 1970;24:1481–1483. doi: 10.3891/acta.chem.scand.24-1481. PubMed DOI
Sassano G., Sanderson P., Franx J., Groot P., van Straalen J., Bassaganya-Riera J. Analysis of pomegranate seed oil for the presence of jacaric acid. J. Sci. Food Agric. 2009;89:1046–1052. doi: 10.1002/jsfa.3552. DOI
Elfalleh W., Tlili N., Nasri N., Yahia Y., Hannachi H., Chaira N., Ying M., Ferchichi A. Antioxidant Capacities of Phenolic Compounds and Tocopherols from Tunisian Pomegranate (Punica granatum) Fruits. J. Food Sci. 2011;76:C707–C713. doi: 10.1111/j.1750-3841.2011.02179.x. PubMed DOI
Yoshime L.T., De Melo I.L.P., Sattler J.A.G., Torres R.P., Mancini-Filho J. Bioactive compounds and the antioxidant capacities of seed oils from pomegranate (Punica granatum L.) and bitter gourd (Momordica charantia L.) Food Sci. Technol. 2019;39:571–580. doi: 10.1590/fst.23218. DOI
Hajib A., Nounah I., Harhar H., Gharby S., Kartah B., Matthäus B., Bougrin K., Charrouf Z. Oil content, lipid profiling and oxidative stability of “Sefri” Moroccan pomegranate (Punica granatum L.) seed oil. OCL. 2021;28:5. doi: 10.1051/ocl/2020069. DOI
Topkafa M., Kara H., Sherazi S.T.H. Evaluation of the Triglyceride Composition of Pomegranate Seed Oil by RP-HPLC Followed by GC-MS. J. Am. Oil Chem. Soc. 2015;92:791–800. doi: 10.1007/s11746-015-2652-1. DOI
Alcaraz-Mármol F., Nuncio-Jáuregui N., Calín-Sánchez Á., Carbonell-Barrachina Á.A., Martínez J.J., Hernández F. Determination of fatty acid composition in arils of 20 pomegranates cultivars grown in Spain. Sci. Hortic. 2015;197:712–718. doi: 10.1016/j.scienta.2015.11.004. DOI
Van Nieuwenhove C.P., Moyano A., Castro-Gómez P., Fontecha J., Sáez G., Zárate G., Pizarro P.L. Comparative study of pomegranate and jacaranda seeds as functional components for the conjugated linolenic acid enrichment of yogurt. LWT. 2019;111:401–407. doi: 10.1016/j.lwt.2019.05.045. DOI
Fadavi A., Barzegar M., Azizi M.H. Determination of fatty acids and total lipid content in oilseed of 25 pomegranates varieties grown in Iran. J. Food Compos. Anal. 2006;19:676–680. doi: 10.1016/j.jfca.2004.09.002. DOI
Hernández F., Melgarejo P., Martínez R., Legua P. Fatty acid composition of seed oils from important Spanish pomegranate cultivars. Ital. J. Food Sci. 2011;23:188–193.
Jing P., Ye T., Shi H., Sheng Y., Slavin M., Gao B., Liu L., Yu L. Antioxidant properties and phytochemical composition of China-grown pomegranate seeds. Food Chem. 2012;132:1457–1464. doi: 10.1016/j.foodchem.2011.12.002. PubMed DOI
Hopkins C.Y., Chisholm M.J., Orgodnik J.A. Identity and configuration of conjugated fatty acids in certain seed oils. Lipids. 1969;4:89–92. doi: 10.1007/BF02531923. DOI
Montañés F., Tallon S., Catchpole O. Isolation of Non-methylene Interrupted or Acetylenic Fatty Acids from Seed Oils Using Semi-preparative Supercritical Chromatography. J. Am. Oil Chem. Soc. 2017;94:981–991. doi: 10.1007/s11746-017-2999-6. DOI
Stránský K., Jursík T. Simple quantitative transesterification of lipids 1. Introduction. Fette Seifen Anstrichm. 1996;98:65–71. doi: 10.1002/lipi.19960980206. DOI
Christie W.W., Han X. Lipid Analysis—Isolation, Separation, Identification and Structural Analysis of Lipids. The Oily Press; Bridgwater, UK: 2003. p. 212.