Structural Characterization of Unusual Fatty Acid Methyl Esters with Double and Triple Bonds Using HPLC/APCI-MS2 with Acetonitrile In-Source Derivatization

. 2021 Oct 26 ; 26 (21) : . [epub] 20211026

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34770878

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund, OP RDE
10119 Charles University Grant Agency
SVV 260560 Charles University in Prague

Double and triple bonds have significant effects on the biological activities of lipids. Determining multiple bond positions in their molecules by mass spectrometry usually requires chemical derivatization. This work presents an HPLC/MS method for pinpointing the double and triple bonds in fatty acids. Fatty acid methyl esters were separated by reversed-phase HPLC with an acetonitrile mobile phase. In the APCI source, acetonitrile formed reactive species, which added to double and triple bonds to form [M + C3H5N]+• ions. Their collisional activation in an ion trap provided fragments helpful in localizing the multiple bond positions. This approach was applied to fatty acids with isolated, cumulated, and conjugated double bonds and triple bonds. The fatty acids were isolated from the fat body of early-nesting bumblebee Bombus pratorum and seeds or seed oils of Punicum granatum, Marrubium vulgare, and Santalum album. Using the method, the presence of the known fatty acids was confirmed, and new ones were discovered.

Zobrazit více v PubMed

Dembitsky V.M. Anticancer activity of natural and synthetic acetylenic lipids. Lipids. 2006;41:883–924. doi: 10.1007/s11745-006-5044-3. PubMed DOI

Li X.-C., Jacob M.R., Khan S.I., Ashfaq M.K., Babu K.S., Agarwal A.K., El Sohly H.N., Manly S.P., Clark A.M. Potent In Vitro Antifungal Activities of Naturally Occurring Acetylenic Acids. Antimicrob. Agents Chemother. 2008;52:2442–2448. doi: 10.1128/AAC.01297-07. PubMed DOI PMC

Vetter W., Walther W., Vecchi M. Pyrrolidide als Derivate für die Strukturaufklärung aliphatischer und alicyclischer Carbonsäuren mittels Massenspektrometrie. Helv. Chim. Acta. 1971;54:1599–1605. doi: 10.1002/hlca.19710540611. DOI

Yu Q.T., Liu B.N., Zhang J.Y., Huang Z.H. Location of methyl branchings in fatty acids: Fatty acids in uropygial secretion of shanghai duck by GC-MS of 4,4-dimethyloxazoline derivatives. Lipids. 1989;24:160. doi: 10.1007/BF02535256. PubMed DOI

Francis G.W., Veland K. Alkylthiolation for the determination of double-bond positions in linear alkenes. J. Chromatogr. A. 1987;219:379–384. doi: 10.1016/S0021-9673(00)80381-7. DOI

Ma X., Chong L., Tian R., Shi R., Hu T., Ouyang Z., Xia Y. Identification and quantitation of lipid C=C location isomers: A shotgun lipidomics approach enabled by photochemical reaction. Proc. Natl. Acad. Sci. USA. 2016;113:2573–2578. doi: 10.1073/pnas.1523356113. PubMed DOI PMC

Murphy R.C., Okuno T., Johnson C.A., Barkley R.M. Determination of Double Bond Positions in Polyunsaturated Fatty Acids Using the Photochemical Paternò-Büchi Reaction with Acetone and Tandem Mass Spectrometry. Anal. Chem. 2017;89:8545–8553. doi: 10.1021/acs.analchem.7b02375. PubMed DOI

Xie X., Xia Y. Analysis of Conjugated Fatty Acid Isomers by the Paternò-Büchi Reaction and Trapped Ion Mobility Mass Spectrometry. Anal. Chem. 2019;91:7173–7180. doi: 10.1021/acs.analchem.9b00374. PubMed DOI

Zhao Y., Zhao H., Zhao X., Jia J., Ma Q., Zhang S., Zhang X., Chiba H., Hui S.-P., Ma X. Identification and Quantitation of C=C Location Isomers of Unsaturated Fatty Acids by Epoxidation Reaction and Tandem Mass Spectrometry. Anal. Chem. 2017;89:10270–10278. doi: 10.1021/acs.analchem.7b01870. PubMed DOI

Song C., Gao D., Li S., Liu L., Chen X., Jiang Y. Determination and quantification of fatty acid C=C isomers by epoxidation reaction and liquid chromatography-mass spectrometry. Anal. Chim. Acta. 2019;1086:82–89. doi: 10.1016/j.aca.2019.08.023. PubMed DOI

Wan L., Gong G., Liang H., Huang G. In situ analysis of unsaturated fatty acids in human serum by negative-ion paper spray mass spectrometry. Anal. Chim. Acta. 2019;1075:120–127. doi: 10.1016/j.aca.2019.05.055. PubMed DOI

Takashima S., Toyoshi K., Yamamoto T., Shimozawa N. Positional determination of the carbon–carbon double bonds in unsaturated fatty acids mediated by solvent plasmatization using LC–MS. Sci. Rep. 2020;10:12988. doi: 10.1038/s41598-020-69833-y. PubMed DOI PMC

Yang W.-C., Adamec A.J., Regnier F.E. Enhancement of the LC/MS Analysis of Fatty Acids through Derivatization and Stable Isotope Coding. Anal. Chem. 2007;79:5150–5157. doi: 10.1021/ac070311t. PubMed DOI

Yang K., Dilthey B.G., Gross R.W. Identification and Quantitation of Fatty Acid Double Bond Positional Isomers: A Shotgun Lipidomics Approach Using Charge-Switch Derivatization. Anal. Chem. 2013;85:9742–9750. doi: 10.1021/ac402104u. PubMed DOI PMC

Thomas M.C., Mitchell T.W., Harman D.G., Deeley J.M., Murphy R.C., Blanksby S.J. Elucidation of Double Bond Position in Unsaturated Lipids by Ozone Electrospray Ionization Mass Spectrometry. Anal. Chem. 2007;79:5013–5022. doi: 10.1021/ac0702185. PubMed DOI PMC

Mitchell T.W., Pham H., Thomas M.C., Blanksby S.J. Identification of double bond position in lipids: From GC to OzID. J. Chromatogr. B. 2009;877:2722–2735. doi: 10.1016/j.jchromb.2009.01.017. PubMed DOI

Poad B.L.J., Marshall D.L., Harazim E., Gupta R., Narreddula V.R., Young R.S.E., Duchoslav E., Campbell J.L., Broadbent J.A., Cvačka J., et al. Combining Charge-Switch Derivatization with Ozone-Induced Dissociation for Fatty Acid Analysis. J. Am. Soc. Mass Spectrom. 2019;30:2135–2143. doi: 10.1007/s13361-019-02285-5. PubMed DOI

Xu Y., Brenna J.T. Atmospheric Pressure Covalent Adduct Chemical Ionization Tandem Mass Spectrometry for Double Bond Localization in Monoene- and Diene-Containing Triacylglycerols. Anal. Chem. 2007;79:2525–2536. doi: 10.1021/ac062055a. PubMed DOI PMC

Vrkoslav V., Háková M., Pecková K., Urbanová K., Cvačka J. Localization of Double Bonds in Wax Esters by High-Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry Utilizing the Fragmentation of Acetonitrile-Related Adducts. Anal. Chem. 2011;83:2978–2986. doi: 10.1021/ac1030682. PubMed DOI

Vrkoslav V., Cvačka J. Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A. 2012;1259:244–250. doi: 10.1016/j.chroma.2012.04.055. PubMed DOI

Háková E., Vrkoslav V., Mikova R., Schwarzová K., Bosakova Z., Cvačka J. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry. Anal. Bioanal. Chem. 2015;407:5175–5188. doi: 10.1007/s00216-015-8537-1. PubMed DOI

Šubčíková L., Hoskovec M., Vrkoslav V., Čmelíková T., Háková E., Míková R., Coufal P., Doležal A., Plavka R., Cvačka J. Analysis of 1,2-diol diesters in vernix caseosa by high-performance liquid chromatography—Atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A. 2015;1378:8–18. doi: 10.1016/j.chroma.2014.11.075. PubMed DOI

Kalužíková A., Vrkoslav V., Harazim E., Hoskovec M., Plavka R., Buděšínský M., Bosáková Z., Cvačka J. Cholesteryl esters of ω-(O-acyl)-hydroxy fatty acids in vernix caseosa. J. Lipid Res. 2017;58:1579–1590. doi: 10.1194/jlr.M075333. PubMed DOI PMC

Van Pelt C.K., Carpenter B.K., Brenna J.T. Studies of structure and mechanism in acetonitrile chemical ionization tandem mass spectrometry of polyunsaturated fatty acid methyl esters. J. Am. Soc. Mass Spectrom. 1999;10:1253–1262. doi: 10.1016/S1044-0305(99)00109-9. PubMed DOI

Michaud A.L., Diau G.-Y., Abril R., Brenna J. Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry. Anal. Biochem. 2002;307:348–360. doi: 10.1016/S0003-2697(02)00037-4. PubMed DOI

Michaud A.L., Yurawecz M.P., Delmonte P., Corl B.A., Bauman D.E., Brenna J.T. Identification and Characterization of Conjugated Fatty Acid Methyl Esters of Mixed Double Bond Geometry by Acetonitrile Chemical Ionization Tandem Mass Spectrometry. Anal. Chem. 2003;75:4925–4930. doi: 10.1021/ac034221+. PubMed DOI

Lawrence P., Brenna J.T. Acetonitrile Covalent Adduct Chemical Ionization Mass Spectrometry for Double Bond Localization in Non-Methylene-Interrupted Polyene Fatty Acid Methyl Esters. Anal. Chem. 2006;78:1312–1317. doi: 10.1021/ac0516584. PubMed DOI

Barthélemy M., Elie N., Pellissier L., Wolfender J.-L., Stien D., Touboul D., Eparvier V. Structural Identification of Antibacterial Lipids from Amazonian Palm Tree Endophytes through the Molecular Network Approach. Int. J. Mol. Sci. 2019;20:2006. doi: 10.3390/ijms20082006. PubMed DOI PMC

Spitzer V., Marx F., Maia J.G., Pfeilsticker K. Curupira tefeensis II: Occurrence of Acetylenic Fatty Acids. Fette Seifen Anstrichm. 1991;93:169–174. doi: 10.1002/lipi.19910930502. DOI

Spitzer V., Bordignon S.A.D.L., Schenkel E.P., Marx F. Identification of nine acetylenic fatty acids, 9-hydroxystearic acid and 9,10-epoxystearic acid in the seed oil of Jodina rhombifolia Hook et Arn. (Santalaceae) J. Am. Oil Chem. Soc. 1994;71:1343–1348. doi: 10.1007/BF02541352. DOI

Spitzer V. The mass spectra of the 4,4-dimethyloxazoline derivatives of some conjugated hydroxy ene-yne C17 and C18 fatty acids. J. Am. Oil Chem. Soc. 1996;73:489–492. doi: 10.1007/BF02523924. DOI

Spitzer V., Tomberg W., Hartmann R., Aichholz R. Analysis of the seed oil of Heisteria silvanii (Olacaceae)—A rich source of a novel C18 acetylenic fatty acid. Lipids. 1997;32:1189–1200. doi: 10.1007/s11745-997-0153-6. PubMed DOI

Gurr M.I., Harwood J.L., Frayn K.N., Murphy D.J., Michell R.H. Lipids: Biochemistry, Biotechnology and Health. 6th ed. Wiley-Blackwell; Hoboken, NJ, USA: 2016.

Litchfield C., Greenberg A.J., Noto G., Morales R.W. Unusually high levels of C24−C30 fatty acids in sponges of the class Demospongiae. Lipids. 1976;11:567–570. doi: 10.1007/BF02532903. PubMed DOI

Morales R.W., Litchfield C. Incorporation of 1-14C-Acetate into C26 fatty acids of the marine sponge Microciona prolifera. Lipids. 1977;12:570–576. doi: 10.1007/BF02533383. PubMed DOI

Christie W.W., Brechany E.Y., Stefanov K., Popov S. The fatty acids of the sponge Dysidea fragilis from the black sea. Lipids. 1992;27:640–644. doi: 10.1007/BF02536125. DOI

Nechev J., Christie W.W., Robaina R., De Diego F., Popov S., Stefanov K. Chemical composition of the sponge Hymeniacidon sanguinea from the Canary Islands. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2004;137:365–374. doi: 10.1016/j.cbpb.2003.10.016. PubMed DOI

Kawashima H. Unusual minor nonmethylene-interrupted di-, tri-, and tetraenoic fatty acids in limpet gonads. Lipids. 2005;40:627–630. doi: 10.1007/s11745-005-1424-y. PubMed DOI

Zhukova N.V. Lipid Classes and Fatty Acid Composition of the Tropical Nudibranch Mollusks Chromodoris sp. and Phyllidia coelestis. Lipids. 2007;42:1169–1175. doi: 10.1007/s11745-007-3123-8. PubMed DOI

Carballeira N. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog. Lipid Res. 2008;47:50–61. doi: 10.1016/j.plipres.2007.10.002. PubMed DOI PMC

Cvačka J., Kofroňová E., Vašíčková S., Stránský K., Jiroš P., Hovorka O., Kindl J., Valterová I. Unusual Fatty Acids in the Fat Body of the Early Nesting Bumblebee, Bombus pratorum. Lipids. 2008;43:441–450. doi: 10.1007/s11745-008-3174-5. PubMed DOI

Sehat N., Kramer J.K.G., Mossoba M.M., Yurawecz M.P., Roach J.A.G., Eulitz K., Morehouse K.M., Ku Y. Identification of conjugated linoleic acid isomers in cheese by gas chromatography, silver ion high performance liquid chromatography and mass spectral reconstructed ion profiles. Comparison of chromatographic elution sequences. Lipids. 1998;33:963–971. doi: 10.1007/s11745-998-0293-8. PubMed DOI

Yurawecz M.P., Roach J.A.G., Sehat N., Mossoba M.M., Kramer J.K.G., Fritsche J., Steinhart H., Ku Y. A new conjugated linoleic acid isomer, 7 trans, 9 cis-octadecadienoic acid, in cow milk, cheese, beef and human milk and adipose tissue. Lipids. 1998;33:803–809. doi: 10.1007/s11745-998-0273-z. PubMed DOI

Ip C., Chin S.F., Scimeca J.A., Pariza M.W. Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res. 1991;51:6118–6124. PubMed

Pariza M.W., Park Y., Cook M.E. The biologically active isomers of conjugated linoleic acid. Prog. Lipid Res. 2001;40:283–298. doi: 10.1016/S0163-7827(01)00008-X. PubMed DOI

O’Connor R., Heinzelman D., Freeman A., Pack F. Spectrophotometric Determination of Alpha-Eleostearic Acid in Freshly Extracted Tung Oil Determination of Extinction Coefficients in Oil Solvents. Ind. Eng. Chem. Anal. Ed. 1945;17:467–470. doi: 10.1021/i560144a001. DOI

Özgül-Yücel S. Determination of conjugated linolenic acid content of selected oil seeds grown in Turkey. J. Am. Oil Chem. Soc. 2005;82:893–897. doi: 10.1007/s11746-005-1161-7. DOI

Hopkins C.Y., Chisholm M.J. A survey of the conjugated fatty acids of seed oils. J. Am. Oil Chem. Soc. 1968;45:176–182. doi: 10.1007/BF02915346. PubMed DOI

Chisholm M.J., Hopkins C.Y. Conjugated fatty acids of tragopogon and calendula seed oils. Can. J. Chem. 1960;38:2500–2507. doi: 10.1139/v60-339. DOI

Toyama Y., Tsuchiya T. A new stereoisomer of eleostearic acid in pomegranate seed oil. J. Soc. Chem. Ind. Jpn. B. 1935;38:182–185.

Cao Y., Gao H.-L., Chen J.-N., Chen Z.-Y., Yang L. Identification and Characterization of Conjugated Linolenic Acid Isomers by Ag+-HPLC and NMR. J. Agric. Food Chem. 2006;54:9004–9009. doi: 10.1021/jf0616199. PubMed DOI

Saha S.S., Patra M., Ghosh M. In vitro antioxidant study of vegetable oils containing conjugated linolenic acid isomers. LWT. 2012;46:10–15. doi: 10.1016/j.lwt.2011.11.008. DOI

Aruna P., Venkataramanamma D., Singh A.K., Singh R. Health Benefits of Punicic Acid: A Review. Compr. Rev. Food Sci. Food Saf. 2015;15:16–27. doi: 10.1111/1541-4337.12171. PubMed DOI

De Melo I.L.P., de Carvalho E.B.T., de Oliveira e Silva A.M., Yoshime L.T., Sattler J.A.G., Pavan R.T., Mancini-Filho J. Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.) Food Sci. Technol. 2016;36:132–139. doi: 10.1590/1678-457X.0069. DOI

Costa A., Silva L., Torres A. Chemical composition of commercial cold-pressed pomegranate (Punica granatum) seed oil from Turkey and Israel, and the use of bioactive compounds for samples’ origin preliminary discrimination. J. Food Compos. Anal. 2019;75:8–16. doi: 10.1016/j.jfca.2018.09.004. DOI

Benjamin S., Spener F. Conjugated linoleic acids as functional food: An insight into their health benefits. Nutr. Metab. 2009;6:36. doi: 10.1186/1743-7075-6-36. PubMed DOI PMC

Dubey K.K.D., Sharma G., Kumar A. Conjugated Linolenic Acids: Implication in Cancer. J. Agric. Food Chem. 2019;67:6091–6101. doi: 10.1021/acs.jafc.9b01379. PubMed DOI

Badami R., Patil K. Structure and occurrence of unusual fatty acids in minor seed oils. Prog. Lipid Res. 1980;19:119–153. doi: 10.1016/0163-7827(80)90002-8. PubMed DOI

Dembitsky V.M., Maoka T. Allenic and cumulenic lipids. Prog. Lipid Res. 2007;46:328–375. doi: 10.1016/j.plipres.2007.07.001. PubMed DOI

Bagby M.O., Smith C.R., Wolff I.A. Laballenic Acid. A New Allenic Acid from Leonotis nepetaefolia Seed Oil1. J. Org. Chem. 1965;30:4227–4229. doi: 10.1021/jo01023a055. DOI

Aitzetmüller D.U.P.D.K., Tsevegsüren N., Vosmann K. A New Allenic Fatty Acid in Phlomis (Lamiaceae) Seed Oil. Fette Seifen Anstrichm. 1997;99:74–78. doi: 10.1002/lipi.19970990304. DOI

Mikolajczak K.L., Rogers M.F., Smith C.R., Wolff I.A. An octadecatrienoic acid from Lamium purpureum L. seed oil containing 5,6-allenic and trans-16-olefinic unsaturation. Biochem. J. 1967;105:1245–1249. doi: 10.1042/bj1051245. PubMed DOI PMC

Smith C. Occurrence of unusual fatty acids in plants. Prog. Chem. Fats Other Lipids. 1971;11:137–177. doi: 10.1016/0079-6832(71)90005-X. DOI

Bohlmann F., Burkhardt T., Zdero C. Naturally Occurring Acetylenes. Academic Press; London, UK: 1973. pp. 1–222.

Huang Y., Zhang S.-B., Chen H.-P., Zhao Z.-Z., Li Z.-H., Feng T., Liu J.-K. New acetylenic acids and derivatives from the Basidiomycete Craterellus lutescens (Cantharellaceae) Fitoterapia. 2016;115:177–181. doi: 10.1016/j.fitote.2016.10.006. PubMed DOI

Fatope M.O., Adoum O.A., Takeda Y. C18 Acetylenic Fatty Acids of Ximenia americana with Potential Pesticidal Activity. J. Agric. Food Chem. 2000;48:1872–1874. doi: 10.1021/jf990550k. PubMed DOI

Li X.-C., Jacob M.R., ElSohly H.N., Nagle D.G., Smillie T.J., Walker L.A., Clark A.M. Acetylenic Acids Inhibiting Azole-Resistant Candida albicans from Pentagonia gigantifolia. J. Nat. Prod. 2003;66:1132–1135. doi: 10.1021/np030196r. PubMed DOI

Carballeira N.M., Sanabria D., Cruz C., Parang K., Wan B., Franzblau S. 2,6-hexadecadiynoic acid and 2,6-nonadecadiynoic acid: Novel synthesized acetylenic fatty acids as potent antifungal agents. Lipids. 2006;41:507–511. doi: 10.1007/s11745-006-5124-4. PubMed DOI PMC

Xu T., Tripathi S.K., Feng Q., Lorenz M., Wright M.A., Jacob M.R., Mask M.M., Baerson S.R., Li X.-C., Clark A.M., et al. A Potent Plant-Derived Antifungal Acetylenic Acid Mediates Its Activity by Interfering with Fatty Acid Homeostasis. Antimicrob. Agents Chemother. 2012;56:2894–2907. doi: 10.1128/AAC.05663-11. PubMed DOI PMC

Kilimnik A., Kuklev D.V., Dembitsky V.M. Antitumor Acetylenic Lipids. Mathews J. Pharm. Sci. 2016;1:5.

Aitzetmüller K., Matthäus B., Friedrich H. A new database for seed oil fatty acids—The database SOFA. Eur. J. Lipid Sci. Technol. 2003;105:92–103. doi: 10.1002/ejlt.200390022. DOI

Aitzetmüller K. Santalbic acid in the plant kingdom. Plant Syst. Evol. 2012;298:1609–1617. doi: 10.1007/s00606-012-0678-5. DOI

Neff W.E., Adlof R.O., Konishi H., Weisleder D. High-performance liquid chromatography of the triacylglycerols of Vernonia galamensis and Crepis alpina seed oils. J. Am. Oil Chem. Soc. 1993;70:449–455. doi: 10.1007/BF02542574. DOI

Neff W.E., Adlof R.O., El-Agaimy M. Silver ion high-performance liquid chromatography of the triacylglycerols of Crepis alpina seed oil. J. Am. Oil Chem. Soc. 1994;71:853–855. doi: 10.1007/BF02540461. DOI

Sun J.-Y., Guo X., Smith M.A. Identification of Crepenynic Acid in the Seed Oil of Atractylodes lancea and A. macrocephala. J. Am. Oil Chem. Soc. 2017;94:655–660. doi: 10.1007/s11746-017-2974-2. DOI

Anderson W.H., Gellerman J.L. Acetylenic acids from mosses. Lipids. 1975;10:501–502. doi: 10.1007/BF02532437. PubMed DOI

Dembitsky V.M., Řezanka T. Distribution of acetylenic acids and polar lipids in some aquatic bryophytes. Phytochemistry. 1995;40:93–97. doi: 10.1016/0031-9422(95)00188-D. DOI

Kalacheva G.S., Sushchik N.N., Gladyshev M.I., Makhutova O.N. Seasonal dynamics of fatty acids in the lipids of water moss Fontinalis antipyretica from the Yenisei River. Russ. J. Plant Physiol. 2009;56:795–807. doi: 10.1134/S1021443709060090. DOI

Pejin B., Bianco A., Newmaster S., Sabovljevic M., Vujisić L., Tešević V., Vajs V., De Rosa S. Fatty acids of Rhodobryum ontariense (Bryaceae) Nat. Prod. Res. 2011;26:696–702. doi: 10.1080/14786419.2010.550580. PubMed DOI

Aveldano M.I., VanRollins M., Horrocks L.A. Separation and Quantitation of Free Fatty Acids and Fatty Acid Methyl Esters by Reverse Phase High Pressure Liquid Chromatograph. J. Lipid Res. 1983;24:83–93. doi: 10.1016/S0022-2275(20)38027-5. PubMed DOI

Rao M.S., Hidajat K., Ching C.B. Reversed-Phase HPLC: The Separation Method for the Characterization and Purification of Long Chain Polyunsaturated Fatty Acids--A Review. J. Chromatogr. Sci. 1995;33:9–21. doi: 10.1093/chromsci/33.1.9. DOI

Carballeira N., Shalabi F., Cruz C., Rodriguez J., Rodríguez E. Comparative study of the fatty acid composition of sponges of the genus Ircinia. Identification of the new 23-methyl-5,9-tetracosadienoic acid. Comp. Biochem. Physiol. Part B Comp. Biochem. 1991;100:489–492. doi: 10.1016/0305-0491(91)90209-V. PubMed DOI

Christie W.W., Brechany E.Y., Marekov I.N., Stefanov K.L., Andreev S.N. The fatty acids of the sponge Hymeniacidon sanguinea from the Black Sea. Comp. Biochem. Physiol. Part B Comp. Biochem. 1994;109:245–252. doi: 10.1016/0305-0491(94)90008-6. DOI

Makarieva T.N., Santalova E.A., Gorshkova I.A., Dmitrenok A.S., Guzii A.G., Gorbach V.I., Svetashev V.I., Stonik V.A. A new cytotoxic fatty acid (5Z,9Z)-22-methyl-5,9-tetracosadienoic acid and the sterols from the far Eastern sponge Geodinella robusta. Lipids. 2002;37:75–80. doi: 10.1007/s11745-002-0866-6. PubMed DOI

Kullenberg B., Bergström G., Ställberg-Stenhagen S. Volatile components of the marking secretion of male bumblebees. Acta Chim. Scand. 1970;24:1481–1483. doi: 10.3891/acta.chem.scand.24-1481. PubMed DOI

Sassano G., Sanderson P., Franx J., Groot P., van Straalen J., Bassaganya-Riera J. Analysis of pomegranate seed oil for the presence of jacaric acid. J. Sci. Food Agric. 2009;89:1046–1052. doi: 10.1002/jsfa.3552. DOI

Elfalleh W., Tlili N., Nasri N., Yahia Y., Hannachi H., Chaira N., Ying M., Ferchichi A. Antioxidant Capacities of Phenolic Compounds and Tocopherols from Tunisian Pomegranate (Punica granatum) Fruits. J. Food Sci. 2011;76:C707–C713. doi: 10.1111/j.1750-3841.2011.02179.x. PubMed DOI

Yoshime L.T., De Melo I.L.P., Sattler J.A.G., Torres R.P., Mancini-Filho J. Bioactive compounds and the antioxidant capacities of seed oils from pomegranate (Punica granatum L.) and bitter gourd (Momordica charantia L.) Food Sci. Technol. 2019;39:571–580. doi: 10.1590/fst.23218. DOI

Hajib A., Nounah I., Harhar H., Gharby S., Kartah B., Matthäus B., Bougrin K., Charrouf Z. Oil content, lipid profiling and oxidative stability of “Sefri” Moroccan pomegranate (Punica granatum L.) seed oil. OCL. 2021;28:5. doi: 10.1051/ocl/2020069. DOI

Topkafa M., Kara H., Sherazi S.T.H. Evaluation of the Triglyceride Composition of Pomegranate Seed Oil by RP-HPLC Followed by GC-MS. J. Am. Oil Chem. Soc. 2015;92:791–800. doi: 10.1007/s11746-015-2652-1. DOI

Alcaraz-Mármol F., Nuncio-Jáuregui N., Calín-Sánchez Á., Carbonell-Barrachina Á.A., Martínez J.J., Hernández F. Determination of fatty acid composition in arils of 20 pomegranates cultivars grown in Spain. Sci. Hortic. 2015;197:712–718. doi: 10.1016/j.scienta.2015.11.004. DOI

Van Nieuwenhove C.P., Moyano A., Castro-Gómez P., Fontecha J., Sáez G., Zárate G., Pizarro P.L. Comparative study of pomegranate and jacaranda seeds as functional components for the conjugated linolenic acid enrichment of yogurt. LWT. 2019;111:401–407. doi: 10.1016/j.lwt.2019.05.045. DOI

Fadavi A., Barzegar M., Azizi M.H. Determination of fatty acids and total lipid content in oilseed of 25 pomegranates varieties grown in Iran. J. Food Compos. Anal. 2006;19:676–680. doi: 10.1016/j.jfca.2004.09.002. DOI

Hernández F., Melgarejo P., Martínez R., Legua P. Fatty acid composition of seed oils from important Spanish pomegranate cultivars. Ital. J. Food Sci. 2011;23:188–193.

Jing P., Ye T., Shi H., Sheng Y., Slavin M., Gao B., Liu L., Yu L. Antioxidant properties and phytochemical composition of China-grown pomegranate seeds. Food Chem. 2012;132:1457–1464. doi: 10.1016/j.foodchem.2011.12.002. PubMed DOI

Hopkins C.Y., Chisholm M.J., Orgodnik J.A. Identity and configuration of conjugated fatty acids in certain seed oils. Lipids. 1969;4:89–92. doi: 10.1007/BF02531923. DOI

Montañés F., Tallon S., Catchpole O. Isolation of Non-methylene Interrupted or Acetylenic Fatty Acids from Seed Oils Using Semi-preparative Supercritical Chromatography. J. Am. Oil Chem. Soc. 2017;94:981–991. doi: 10.1007/s11746-017-2999-6. DOI

Stránský K., Jursík T. Simple quantitative transesterification of lipids 1. Introduction. Fette Seifen Anstrichm. 1996;98:65–71. doi: 10.1002/lipi.19960980206. DOI

Christie W.W., Han X. Lipid Analysis—Isolation, Separation, Identification and Structural Analysis of Lipids. The Oily Press; Bridgwater, UK: 2003. p. 212.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace