Cholesteryl esters of ω-(O-acyl)-hydroxy fatty acids in vernix caseosa
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28576934
PubMed Central
PMC5538280
DOI
10.1194/jlr.m075333
PII: S0022-2275(20)33784-6
Knihovny.cz E-zdroje
- Klíčová slova
- cholesterol, lipidomics, mass spectrometry, neutral lipids, skin lipids,
- MeSH
- estery cholesterolu metabolismus MeSH
- lidé MeSH
- mastné kyseliny chemie metabolismus MeSH
- novorozenec MeSH
- vernix caseosa metabolismus MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- estery cholesterolu MeSH
- mastné kyseliny MeSH
Cholesteryl esters of ω-(O-acyl)-hydroxy FAs (Chl-ωOAHFAs) were identified for the first time in vernix caseosa and characterized using chromatography and MS. Chl-ωOAHFAs were isolated using adsorption chromatography on silica gel and magnesium hydroxide. Their general structure was established using high-resolution and tandem MS of intact lipids, and products of their transesterification and derivatizations. Individual molecular species were characterized using nonaqueous reversed-phase HPLC coupled to atmospheric pressure chemical ionization. The analytes were detected as protonated molecules, and their structures were elucidated in the negative ion mode using controlled thermal decomposition and data-dependent fragmentation. About three hundred molecular species of Chl-ωOAHFAs were identified in this way. The most abundant Chl-ωOAHFAs contained 32:1 ω-hydroxy FA (ω-HFA) and 14:0, 15:0, 16:0, 16:1, and 18:1 FAs. The double bond in the 32:1 ω-HFA was in the n-7 and n-9 positions. Chl-ωOAHFAs are estimated to account for approximately 1-2% of vernix caseosa lipids.
Zobrazit více v PubMed
Haubrich K. A. 2003. Role of vernix caseosa in the neonate: potential application in the adult population. AACN Clin. Issues. 14: 457–464. PubMed
Hoath S. B., Pickens W. L., and Visscher M. O.. 2006. The biology of vernix caseosa. Int. J. Cosmet. Sci. 28: 319–333. PubMed
Singh G., and Archana G.. 2008. Unraveling the mystery of vernix caseosa. Indian J. Dermatol. 53: 54–60. PubMed PMC
Schmid R. 1939. Notizen zur Kenntnis der Vernix caseosa. Arch. Gynakol. 168: 445–450.
Rissmann R., Groenink H. W. W., Weerheim A. M., Hoath S. B., Ponec M., and Bouwstra J. A.. 2006. New insights into ultrastructure, lipid composition and organization of vernix caseosa. J. Invest. Dermatol. 126: 1823–1833. PubMed
Kaerkkaeinen J., Nikkari T., Ruponen S., and Haahti E.. 1965. Lipids of vernix caseosa. J. Invest. Dermatol. 44: 333–338. PubMed
Ansari M. N., Fu H. C., and Nicolaides N.. 1970. Fatty acids of the alkane diol diesters of vernix caseosa. Lipids. 5: 279–282. PubMed
Nikkari T. 1969. The occurrence of diester waxes in human vernix caseosa and in hair lipids of common laboratory animals. Comp. Biochem. Physiol. 29: 795–803. PubMed
Fu H. C., and Nicolaides N.. 1969. The structure of alkane diols of diesters in vernix caseosa lipids. Lipids. 4: 170–175. PubMed
Nicolaides N., Fu H. C., and Rice G. R.. 1968. The skin surface lipids of man compared with those of eighteen species of animals. J. Invest. Dermatol. 51: 83–89. PubMed
Nikkari T. 1974. Comparative chemistry of sebum. J. Invest. Dermatol. 62: 257–267. PubMed
Nicolaides N., Fu H. C., and Ansari M. N.. 1970. Diester waxes in surface lipids of animal skin. Lipids. 5: 299–307. PubMed
Yeung D., Nacht S., and Cover R. E.. 1981. The composition of the skin surface lipids of the gerbil. Biochim. Biophys. Acta. 663: 524–535. PubMed
Schmid P. C., Wedmid Y., and Schmid H. O.. 1978. 15-Methyl-1,2-hexadecanediol, a major constituent of hamster surface wax. Lipids. 13: 825–827. PubMed
Sharaf D. M., Clark S. J., and Downing D. T.. 1977. Skin surface lipids of the dog. Lipids. 12: 786–790. PubMed
Nishimaki-Mogami T., Minegishi K., Takahashi A., Kawasaki Y., Kurokawa Y., and Uchiyama M.. 1988. Characterization of skin-surface lipids from the monkey (Macaca fascicularis). Lipids. 23: 869–877. PubMed
Haahti E. O. A., and Fales H. M.. 1967. The uropygiols: identification of the unsaponifiable constituent of a diester wax from chicken preen glands. J. Lipid Res. 8: 131–137. PubMed
Šubčíková L., Hoskovec M., Vrkoslav V., Čmelíková T., Háková E., Míková R., Coufal P., Doležal A., Plavka R., and Cvačka J.. 2015. Analysis of 1,2-diol diesters in vernix caseosa by high-performance liquid chromatography - atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A. 1378: 8–18. PubMed
Neises B., and Steglich W.. 1978. Simple method for the esterification of carboxylic acids. Angew. Chem. Int. Ed. Engl. 17: 522–524.
Stránský K., and Jursík T.. 1996. Simple quantitative transesterification of lipids. 1. Introduction. Fett/Lipid. 98: 65–71.
Carvalho F., Gauthie L. T., Hodgson D. J., Dawson B., and Buist P. H.. 2005. Quantitation of hydroxylated byproduct formation in a Saccharomyces cerevisiae Δ9 desaturating system. Org. Biomol. Chem. 3: 3979–3983. PubMed
Corey E. J., and Schmidt G.. 1979. Useful procedures for the oxidation of alcohols involving pyridinium dichromate in aprotic media. Tetrahedron Lett. 20: 399–402.
Butovich I. A., Lu H., McMahon A., and Eule J. C.. 2012. Toward an animal model of the human tear film: biochemical comparison of the mouse, canine, rabbit, and human meibomian lipidomes. Invest. Ophthalmol. Vis. Sci. 53: 6881–6896. PubMed PMC
Butovich I. A. 2013. Tear film lipids. Exp. Eye Res. 117: 4–27. PubMed PMC
Mori N., Fukano Y., Arita R., Shirakawa R., Kawazu K., Nakamura M., and Amano S.. 2014. Rapid identification of fatty acids and (O-acyl)-ω-hydroxy fatty acids in human meibum by liquid chromatography/high-resolution mass spectrometry. J. Chromatogr. A. 1347: 129–136. PubMed
Nicolaides N. 1970. Magnesium oxide as an adsorbent for the chromatographic separation of molecules according to their degree of flatness, e.g. the separation of wax esters from sterol esters. J. Chromatogr. Sci. 8: 717–720.
Stewart M. E., and Downing D. T.. 1981. Separation of wax esters from steryl esters by chromatography on magnesium hydroxide. Lipids. 16: 355–359. PubMed
Nicolaides N., Soukup V. G., and Ruth E. C.. 1983. Mass spectrometric fragmentation patterns of the acetoxy and trimethylsilyl derivatives of all the positional isomers of the methyl hydroxypalmitates. Biol. Mass Spectrom. 10: 441–449.
Christie W. W. 2016. Mass spectrometry of methyl esters: hydroxy fatty acids - trimethylsilyl derivatives. Accessed January 5, 2017, at http://www.lipidhome.co.uk/ms/methesters/me-hydroxy-2/index.htm.
Vrkoslav V., Háková E., Pecková K., Urbanová K., and Cvačka J.. 2011. Localization of double bonds in wax esters by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry utilizing the fragmentation of acetonitrile-related adducts. Anal. Chem. 83: 2978–2986. PubMed
Vrkoslav V., and Cvačka J.. 2012. Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A. 1259: 244–250. PubMed
Háková E., Vrkoslav V., Míková R., Schwarzová-Pecková K., Bosáková Z., and Cvačka J.. 2015. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry. Anal. Bioanal. Chem. 407: 5175–5188. PubMed
Butovich I. A., Wojtowitz J. C., and Molai M.. 2009. Human tear film and meibum. Very long chain wax esters and (O-acyl)-omega-hydroxy fatty acids of meibum. J. Lipid Res. 50: 2471–2485. PubMed PMC
Christie W. W. 1987. The separation of molecular species of glycerolipids. In High-Performance Liquid Chromatography and Lipids: A Practical Guide. Christie W. W., editor. Pergamon Press, Oxford: 169–210.
Holčapek M., Lísa M., Jandera P., and Kabátová N.. 2005. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J. Sep. Sci. 28: 1315–1333. PubMed
Vrkoslav V., Urbanová K., and Cvačka J.. 2010. Analysis of wax ester molecular species by high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A. 1217: 4184–4194. PubMed
Oku H., Mimura K., Tokitsu Y., Onaga K., Iwasaki H., and Chinen I.. 2000. Biased distribution of the branched-chain fatty acids in ceramides of vernix caseosa. Lipids. 35: 373–381. PubMed
Hoeger P. H., Schreiner V., Klaassen I. A., Enzmann C. C., Friedrichs K., and Bleck O.. 2002. Epidermal barrier lipids in human vernix caseosa: corresponding ceramide pattern in vernix and fetal skin. Br. J. Dermatol. 146: 194–201. PubMed
Stewart M. E., and Downing D. T.. 2001. The omega-hydroxyceramides of pig epidermis are attached to corneocytes solely through omega-hydroxyl groups. J. Lipid Res. 42: 1105–1110. PubMed
Swartzendruber D. C., Wertz P. W., Madison K. C., and Downing D. T.. 1987. Evidence that the corneocyte has a chemically bound lipid envelope. J. Invest. Dermatol. 88: 709–713. PubMed
Wertz P. W., Madison K. C., and Downing D. T.. 1989. Covalently bound lipids of human stratum corneum. J. Invest. Dermatol. 92: 109–111. PubMed
Davidson H. J., and Kuonen V. J.. 2004. The tear film and ocular mucins. Vet. Ophthalmol. 7: 71–77. PubMed PMC
Nicolaides N., and Ruth E. C.. 1982–1983. Unusual fatty acids in the lipids of steer and human meibomian gland excreta. Curr. Eye Res. 2: 93–98. PubMed
Nicolaides N., Santos E. C., and Papadakis K.. 1984. Double-bond patterns of fatty acids and alcohols in steer and human meibomian gland lipids. Lipids. 19: 264–277. PubMed
Nicolaides N., and Santos E. C.. 1985. The di- and triesters of the lipids of steer and human meibomian glands. Lipids. 20: 454–467. PubMed
Butovich I. A. 2011. Lipidomics of human meibomian gland secretions: chemistry, biophysics, and physiological role of meibomian lipids. Prog. Lipid Res. 50: 278–301. PubMed PMC
Lam S. M., Tong L., Yong S. S., Li B., Chaurasia S. S., Shui G., and Wenk M. R.. 2011. Meibum lipid composition in Asians with dry eye disease. PLoS One. 6: e24339. PubMed PMC
Chen J., Green-Church K. B., and Nichols K. K.. 2010. Shotgun lipidomic analysis of human meibomian gland secretions with electrospray ionization tandem mass spectrometry. Invest. Ophthalmol. Vis. Sci. 51: 6220–6231. PubMed PMC
Butovich I. A., Borowiak A. M., and Eule J. C.. 2011. Comparative HPLC-MS analysis of canine and human meibomian lipidomes: many similarities, a few differences. Sci. Rep. 1: 24. PubMed PMC
Butovich I. A. 2011. On the presence of (O-acyl)-omega-hydroxy fatty acids and of their esters in human meibomian gland secretions. Invest. Ophthalmol. Vis. Sci. 52: 639–641. PubMed PMC
Wood P. L., Scoggin K., Ball B. A., Troedsson M. H., and Squires E. L.. 2016. Lipidomics of equine sperm and seminal plasma: identification of amphiphilic (O-acyl)-ω-hydroxy-fatty acids. Theriogenology. 86: 1212–1221. PubMed
Yore M. M., Syed I., Moraes-Vieira P. M., Zhang T., Herman M. A., Homan E. A., Patel R. T., Lee J., Chen S., Peroni O. D., et al. . 2014. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell. 159: 318–332. PubMed PMC
Kuda O., Brezinova M., Rombaldova M., Slavikova B., Posta M., Beier P., Janovska P., Veleba J., Kopecky J. Jr., Kudova E., et al. . 2016. Docosahexaenoic acid-derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) with anti-inflammatory properties. Diabetes. 65: 2580–2590. PubMed
Haahti E., Nikkari T., Salmi A. M., and Laaksonen A. L.. 1961. Fatty acids of vernix caseosa. Scand. J. Clin. Lab. Invest. 13: 70–73. PubMed
Míková R., Vrkoslav V., Hanus R., Háková E., Habová Z., Doležal A., Plavka R., Coufal P., and Cvačka J.. 2014. Newborn boys and girls differ in the lipid composition of vernix caseosa. PLoS One. 9: e99173. PubMed PMC
Hauff S., and Vetter W.. 2010. Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry. J. Chromatogr. A. 1217: 8270–8278. PubMed
Chen J., Green K. B., and Nichols K. K.. 2013. Quantitative profiling of major neutral lipid classes in human meibum by direct infusion electrospray ionization mass spectrometry. Invest. Ophthalmol. Vis. Sci. 54: 5730–5753. PubMed PMC
Butovich I. A. 2009. Cholesteryl esters as a depot for very long chain fatty acids in human meibum. J. Lipid Res. 50: 501–513. PubMed PMC
Structural characterization of wax esters using ultraviolet photodissociation mass spectrometry
Combining Charge-Switch Derivatization with Ozone-Induced Dissociation for Fatty Acid Analysis
Nonhydroxylated 1-O-acylceramides in vernix caseosa