Newborn boys and girls differ in the lipid composition of vernix caseosa

. 2014 ; 9 (6) : e99173. [epub] 20140609

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24911066

Vernix caseosa protects the skin of a human fetus during the last trimester of pregnancy and of a newborn after the delivery. Besides its cellular and proteinaceous components, an important constituent and functional agent is a complex lipid fraction, implicated in a multitude of salubrious effects of vernix caseosa. Little is known about how the chemical composition of vernix caseosa lipids is affected by various biological characteristics of the baby, such as the gestational age, birth weight, and, last but not least, the gender of the newborn. This study reports on the chemical variability of lipids contained in the vernix caseosa of twenty newborn girls and boys and shows that the quantitative patterns of the lipids are sex-specific. The specificity of lipids was investigated at the level of fatty acids in the total lipid extracts and intact lipids of several neutral lipid classes. Hydrocarbons, wax esters, cholesteryl esters, diol diesters and triacylglycerols were isolated using optimized semipreparative thin-layer chromatography, and the molecular species within each class were characterized using matrix-assisted laser desorption/ionization mass spectrometry. Statistical evaluation revealed significant quantitative sex-related differences in the lipid composition of vernix caseosa among the newborns, pronounced in the two lipid classes associated with the activity of sebaceous glands. Higher proportions of wax esters and triacylglycerols with longer hydrocarbon chains were observed in newborn girls.

Erratum v

PLoS One. 2014;9(9):e107847 PubMed

Zobrazit více v PubMed

Hoath SB, Pickens WL, Visscher MO (2006) The biology of vernix caseosa. Int J Cosmetic Sci 28: 319–333. PubMed

Singh G, Archana G (2008) Unraveling the mystery of vernix caseosa. Indian J Dermatol 53: 54–60. PubMed PMC

Youssef W, Wickett RR, Hoath SB (2001) Surface free energy characterization of vernix caseosa. Potential role in waterproofing the newborn infant. Skin Res Technol 7: 10–17. PubMed

Tansirikongkol A, Wickett RR, Visscher MO, Hoath SB (2007) Effect of Vernix Caseosa on the Penetration of Chymotryptic Enzyme: Potential Role in Epidermal Barrier Development. Pediatr Res 62: 49–53. PubMed

Yoshio H, Tollin M, Gudmundsson GH, Lagercrantz H, Jornvall H, et al. (2003) Antimicrobial Polypeptides of Human Vernix Caseosa and Amniotic Fluid: Implications for Newborn Innate Defense. Pediatr Res 53: 211–216. PubMed

Tollin M, Bergsson G, Kai-Larsen Y, Lengqvist J, Sjövall J, et al. (2005) Vernix caseosa as a multi-component defence system based on polypeptides, lipids and their interactions. Cell Mol Life Sci 62: 2390–2399. PubMed PMC

Visscher MO, Narendran V, Pickens WL, LaRuffa AA, Meinzen-Derr J, et al. (2005) Vernix caseosa in neonatal adaptation. J Perinatol 25: 440–446. PubMed

Bautista MI, Wickett RR, Visscher MO, Pickens WL, Hoath SB (2000) Characterisation of Vernix Caseosa as a Natural Biofilm: Comparison to Standard Oil-Based Ointments. Pediatr Dermatol 17: 253–260. PubMed

Nopper AJ, Horii KA, Sookdeo-Drost S, Wang TH, Mancini AJ, et al. (1996) Topical ointment therapy benefits premature infants. J Pediatr 128: 660–669. PubMed

Tansirikongkol A, Visscher MO, Wickett RR (2007) Water-handling properties of vernix caseosa and a synthetic analogue. J Cosmet Sci 58: 651–662. PubMed

Ågren J, Zelenin S, Håkansson M, Eklöf AC, Aperia A, et al. (2003) Transepidermal Water Loss in Developing Rats: Role of Aquaporins in the Immature Skin. Pediatr Res 53: 558–565. PubMed

Rissmann R, Oudshoorn MH, Kocks E, Hennink WE, Ponec M, et al. (2008) Lanolin-derived lipid mixtures mimic closely the lipid composition and organization of vernix caseosa lipids. Biochim Biophys Acta 1778: 2350–2360. PubMed

Rissmann R, Oudshoorn MH, Zwier R, Ponec M, Bouwstra JA, et al. (2009) Mimicking vernix caseosa–Preparation and characterization of synthetic biofilms. Int J Pharm 372: 59–65. PubMed

Kärkkäinen J, Nikkari T, Ruponen S, Haahti E (1965) Lipids of vernix caseosa. J Invest Dermatol 44: 333–338. PubMed

Nazzaro-Porro M, Passi S, Boniforti L, Belsito F (1979) Effects of aging on fatty acids in skin surface lipids. J Invest Dermatol 73: 112–117. PubMed

Rissmann R, Gooris G, Ponec M, Bouwstra J (2009) Long periodicity phase in extracted lipids of vernix caseosa obtained with equilibration at physiological temperature. Chem Phys Lipids 158: 32–38. PubMed

Ansari MN, Fu HC, Nicolaides N (1970) Fatty acids of the alkane diol diesters of vernix caseosa. Lipids 5: 279–282. PubMed

Nicolaides N, Apon JM, Wong DH (1976) Further studies of the saturated methyl branched fatty acids of vernix caseosa lipid. Lipids 11: 781–790. PubMed

Rissmann R, Groenink HW, Weerheim AM, Hoath SB, Ponec M, et al. (2006) New Insights into Ultrastructure, Lipid Composition and Organization of Vernix caseosa. J Invest Dermatol 126: 1823–1833. PubMed

Stewart ME, Quinn MA, Downing DT (1982) Variability in the fatty-acid composition of wax esters from vernix-caseosa and its possible relation to sebaceous gland activity. J Invest Dermatol 78: 291–295. PubMed

Schiller J, Süss R, Fuchs B, Muller M, Zschornig O, et al. (2007) MALDI-TOF MS in lipidomics. Front Biosci 12: 2568–2579. PubMed

Fuchs B, Schiller J (2009) Application of MALDI-TOF mass spectrometry in lipidomics. European Journal of Lipid Science and Technology 111: 83–98.

Schiller J, Süss R, Arnhold J, Fuchs B, Lessig J, et al. (2004) Matrix-assisted laser desorption and ionization time-of flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43: 449–488. PubMed

Murphy RC, Fiedler J, Hevko J (2001) Analysis of nonvolatile lipids by mass spectrometry. Chem Rev 101: 479–526. PubMed

Asbury GR, Al-Saad K, Siems WF, Hannan RM, Hill HH (1999) Analysis of triacylglycerols and whole oils by matrix assisted laser desorption/ionization time of flight mass spectrometry. J Am Soc Mass Spectrom 10: 983–991.

Vrkoslav V, Míková R, Cvačka J (2009) Characterization of natural wax esters by MALDI-TOF mass spectrometry. J Mass Spectrom 44: 101–110. PubMed

Zouboulis CC, Baron JM, Böhm M, Kippenberger S, Kurzen H, et al. (2008) Frontiers in sebaceous gland biology and pathology. Exp Dermatol 17: 542–551. PubMed

Pochi PE, Strauss JS (1974) Endocrinologic control of the development and activity of the human sebaceous gland. J Invest Dermatol 62: 191–201. PubMed

Smith KR, Thiboutot DM (2008) Sebaceous gland lipids: friend or foe? J Lipid Res 49: 271–281. PubMed

Stewart ME, Downing DT (1981) Separation of Wax Esters from Steryl Esters by Chromatography on Magnesium Hydroxide. Lipids 16: 355–359. PubMed

Nicolaides N (1970) Magnesium Oxide as an Adsorbent for the Chromatographic Separation of Molecules According to their Degree of Flatness, e.g. the Separation of Wax Esters from Sterol Esters. J Chromatogr Sci 8: 717–720.

Carrol KK (1961) Separation of lipid classes by chromatography on florisil. J Lipid Res 2: 135–141. PubMed

Stránský K, Jursík T (1996) Simple Quantitative Transesterification of Lipids. Introduction. Fett/Lipid 98: 65–71.

Hidaka H, Hanyu N, Sugano M, Kawasaki K, Yamauchi K, et al. (2007) Analysis of Human Serum Lipoprotein Lipid Composition Using MALDI-TOF Mass Spectrometry. Ann Clin Lab Sci 37: 213–221. PubMed

Zschörnig O, Pietsch M, Süss R, Schiller J, Gütschow M (2005) Cholesterol esterase action on human high density lipoproteins and inhibition studies: detection by MALDI-TOF MS. J Lipid Res 46: 803–811. PubMed

Astigarraga E, Barreda-Gómez G, Lombardero L, Fresnedo O, Castaño F, et al. (2008) Profiling and Imaging of Lipids on Brain and Liver Tissue by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using 2-Mercaptobenzothiazole as a Matrix. Anal Chem 80: 9105–9114. PubMed

Fuchs B, Süss R, Schiller J (2010) An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 49: 450–475. PubMed

Stübiger G, Belgacem O (2007) Analysis of Lipids Using 2,4,6-Trihydroxyacetophenone as a Matrix for MALDI Mass Spectrometry. Anal Chem 79: 3206–3213. PubMed

Hauff S, Vetter W (2010) Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry. J Chromatogr A 1217: 8270–8278. PubMed

Hanley K, Rassner U, Jiang Y, Vansomphone D, Crumrine D, et al. (1996) Hormonal Basis for the Gender Difference in Epidermal Barrier Formation in the Fetal Rat. J Clin Invest 97: 2576–2584. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace