The Formation of Inherently Chiral Calix[4]quinolines by Doebner-Miller Reaction of Aldehydes and Aminocalixarenes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-07833S
Czech Science Foundation
PubMed
36500638
PubMed Central
PMC9736694
DOI
10.3390/molecules27238545
PII: molecules27238545
Knihovny.cz E-zdroje
- Klíčová slova
- calixarene, chiral recognition, complexation, inherent chirality, mercuration, meta-substitution, quinoline formation,
- MeSH
- aldehydy * MeSH
- chinoliny * MeSH
- cyklizace MeSH
- kvartérní amoniové sloučeniny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aldehydy * MeSH
- chinoliny * MeSH
- kvartérní amoniové sloučeniny MeSH
The formation of inherently chiral calix[4]arenes by the intramolecular cyclization approach suffers from a limited number of suitable substrates for these reactions. Here, we report an easy way to prepare one class of such compounds: calixquinolines, which can be obtained by the reaction of aldehydes with easily accessible aminocalix[4]arenes in acidic conditions (Doebner-Miller reaction). The synthetic procedure represents a very straightforward approach to the inherently chiral macrocyclic systems. The complexation studies revealed the ability of these compounds to complex quaternary ammonium salts with different stoichiometries depending on the guest molecules. At the same time, the ability of enantioselective complexation of chiral N-methylammonium salts was demonstrated.
Department of Solid State Chemistry UCTP Technická 5 166 28 Prague Czech Republic
Laboratory of NMR Spectroscopy UCTP Technická 5 166 28 Prague Czech Republic
Zobrazit více v PubMed
Gutsche C.D. Calixarenes: An Introduction. RSC Publishing; Cambridge, UK: 2008.
Mandolini L., Ungaro R. Calixarenes in Action. Imperial College Press; London, UK: 2000.
Vicens J., Harrowfield J., Baklouti L. Calixarenes in the Nanoworld. Springer; Dordrecht, The Netherlands: 2007.
Neri P., Sessler J.L., Wang M.X. Calixarenes and Beyond. Springer; Cham, Switzerland: 2016.
Leray I., Valeur B. Calixarene-Based Fluorescent Molecular Sensors for Toxic Metals. Eur. J. Inorg. Chem. 2009;24:3525–3535. doi: 10.1002/ejic.200900386. DOI
Siddiqui S., Cragg P.J. Design and Synthesis of Transition Metal and Inner Transition Metal Binding Calixarenes. Mini-Rev. Org. Chem. 2009;6:283–299. doi: 10.2174/157019309789371640. DOI
Mutihac L., Buschmann H.-J., Mutihac R.-C., Schollmeyer E. Complexation and separation of amines, amino acids, and peptides by functionalized calix[n]arenes. J. Incl. Phenom. Macrocyclic Chem. 2005;51:1–10. doi: 10.1007/s10847-004-5098-x. DOI
Lhotak P. Anion receptors based on calixarenes. Top. Curr. Chem. 2005;255:65–95.
Kongor A.R., Mehta V.A., Modi K.M., Panchal M.K., Dey S.A., Panchal U.S., Jain V.K. Calix-Based Nanoparticles: A Review. Top. Curr. Chem. 2016;374:1–46. doi: 10.1007/s41061-016-0029-z. PubMed DOI
Szumna A. Inherently chiral concave molecules-from synthesis to applications. Chem. Soc. Rev. 2010;39:4274–4285. doi: 10.1039/b919527k. PubMed DOI
Arnott G.E. Inherently Chiral Calixarenes: Synthesis and Applications. Chem.-Eur. J. 2018;24:1744–1754. doi: 10.1002/chem.201703367. PubMed DOI
Li S.-Y., Xu Y.-W., Liu Y.-W., Su C.-Y. Inherently chiral calixarenes. Synthesis, optical resolution, chiral recognition and asymmetric catalysis. Int. J. Mol. Sci. 2011;12:429–455. doi: 10.3390/ijms12010429. PubMed DOI PMC
Lhoták P. Direct meta substitution of calix[4]arenes. Org. Biomol. Chem. 2022;20:7377–7390. doi: 10.1039/D2OB01437H. PubMed DOI
Slavik P., Dudic M., Flidrova K., Sykora J., Cisarova I., Bohm S., Lhotak P. Unprecedented Meta-Substitution of Calixarenes: Direct Way to Inherently Chiral Derivatives. Org. Lett. 2012;14:3628–3631. doi: 10.1021/ol301420t. PubMed DOI
Ikeda A., Yoshimura M., Lhotak P., Shinkai S. Synthesis and optical resolution of naphthalene-containing inherently chiral calix[4] arenes derived by intramolecular ring closure or stapling of proximal phenyl units. J. Chem. Soc. Perkin Trans. 1996;1:1945–1950. doi: 10.1039/p19960001945. DOI
Hueggenberg W., Seper A., Oppel I.M., Dyker G. Multifold photocyclization reactions of styrylcalix[4]arenes. Eur. J. Org. Chem. 2010:6786–6797. doi: 10.1002/ejoc.201001108. DOI
Elaieb F., Semeril D., Matt D., Pfeffer M., Bouit P.-A., Hissler M., Gourlaouen C., Harrowfield J. Calix[4]arene-fused phospholes. Dalton Trans. 2017;46:9833–9845. doi: 10.1039/C7DT01899A. PubMed DOI
Tlusty M., Dvorakova H., Cejka J., Kohout M., Lhotak P. Regioselective formation of the quinazoline moiety on the upper rim of calix[4]arene as a route to inherently chiral systems. New J. Chem. 2020;44:6490–6500. doi: 10.1039/D0NJ01035A. DOI
Miao R., Zheng Q.-Y., Chen C.-F., Huang Z.-T. Efficient Syntheses and Resolutions of Inherently Chiral Calix[4]quinolines in the Cone and Partial-Cone Conformation. J. Org. Chem. 2005;70:7662–7671. doi: 10.1021/jo050980b. PubMed DOI
Wang T., Ledeboer M.W., Duffy J.P., Pierce A.C., Zuccola H.J., Block E., Shlyakter D., Hogan J.K., Bennani Y.L. A novel chemotype of kinase inhibitors: Discovery of 3,4-ring fused 7-azaindoles and deazapurines as potent JAK2 inhibitors. Bioorg. Med. Chem. Lett. 2010;20:153–156. doi: 10.1016/j.bmcl.2009.11.021. PubMed DOI
Zheng L., Xiang J., Dang Q., Guo S., Bai X. Design and synthesis of a tetracyclic pyrimidine-fused benzodiazepine library. J. Comb. Chem. 2006;8:381–387. doi: 10.1021/cc0501615. PubMed DOI
Tlusty M., Slavik P., Kohout M., Eigner V., Lhotak P. Inherently Chiral Upper-Rim-Bridged Calix[4]arenes Possessing a Seven Membered Ring. Org. Lett. 2017;19:2933–2936. doi: 10.1021/acs.orglett.7b01170. PubMed DOI
Tlusty M., Eigner V., Babor M., Kohout M., Lhotak P. Synthesis of upper rim-double-bridged calix[4]arenes bearing seven membered rings and related compounds. RSC Adv. 2019;9:22017–22030. doi: 10.1039/C9RA05075B. PubMed DOI PMC
Liska A., Flidrova K., Lhotak P., Ludvik J. Influence of structure on electrochemical reduction of isomeric mono- and di-, nitro- or nitrosocalix[4]arenes. Monatsh. Chem. 2015;146:857–862. doi: 10.1007/s00706-015-1441-8. DOI
Wu Y.-C., Liu L., Li H.-J., Wang D., Chen Y.-J. Skraup−Doebner−Von Miller Quinoline Synthesis Revisited: Reversal of the Regiochemistry for γ-Aryl-β,γ-unsaturated α-Ketoesters. J. Org. Chem. 2006;71:6592–6595. doi: 10.1021/jo060290n. PubMed DOI
Su L.-L., Zheng Y.-W., Wang W.-G., Chen B., Wei X.-Z., Wu L.-Z., Tung C.-H. Photocatalytic Synthesis of Quinolines via Povarov Reaction under Oxidant-Free Conditions. Org. Lett. 2022;24:1180–1185. doi: 10.1021/acs.orglett.1c04287. PubMed DOI
Kelderman E., Verboom W., Engbersen J.F., Reinhoudt D.N., Heesink G.J., van Hulst N.F., Derhaeg L., Persoons A. Nitrocalix[4] arenes as molecules for second-order nonlinear optics. Angew. Chem. Int. Ed. Engl. 1992;31:1075–1077. doi: 10.1002/anie.199210751. DOI
van Wageningen A.M., Snip E., Verboom W., Reinhoudt D.N., Boerrigter H. Synthesis and Application of Iso (thio) cyanate-Functionalized Calix[4] arenes. Liebigs Ann. 1997;1997:2235–2245. doi: 10.1002/jlac.199719971110. DOI
Flidrova K., Bohm S., Dvorakova H., Eigner V., Lhotak P. Dimercuration of Calix[4]arenes: Novel Substitution Pattern in Calixarene Chemistry. Org. Lett. 2014;16:138–141. doi: 10.1021/ol403133b. PubMed DOI
The Binding Constants Were Calculated Using the Bindfit Application Freely. [(accessed on 30 October 2022)]. Available online: http://supramolecular.org.
Palatinus L., Chapuis G. SUPERFLIP–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI
Betteridge P., Carruthers J., Cooper R., Prout K., Watkin D. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
Rohlíček J., Hušák M. MCE2005–a new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules. J. Appl. Crystallogr. 2007;40:600–601. doi: 10.1107/S0021889807018894. DOI