Structural characterization of wax esters using ultraviolet photodissociation mass spectrometry

. 2024 Oct ; 416 (25) : 5497-5512. [epub] 20240720

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39030399

Grantová podpora
LX22NPO5104 Ministerstvo Školství, Mládeže a Tělovýchovy
SVV 260560 Charles University
GAUK 650520 Grant Agency of Charles University

Odkazy

PubMed 39030399
PubMed Central PMC11427557
DOI 10.1007/s00216-024-05434-2
PII: 10.1007/s00216-024-05434-2
Knihovny.cz E-zdroje

Wax esters play critical roles in biological systems, serving functions from energy storage to chemical signaling. Their diversity is attributed to variations in alcohol and acyl chains, including their length, branching, and the stereochemistry of double bonds. Traditional analysis by mass spectrometry with collisional activations (CID, HCD) offers insights into acyl chain lengths and unsaturation level. Still, it falls short in pinpointing more nuanced structural features like the position of double bonds. As a solution, this study explores the application of 213-nm ultraviolet photodissociation (UVPD) for the detailed structural analysis of wax esters. It is shown that lithium adducts provide unique fragments as a result of Norrish and Norrish-Yang reactions at the ester moieties and photoinduced cleavages of double bonds. The product ions are useful for determining chain lengths and localizing double bonds. UVPD spectra of various wax esters are presented systematically, and the effect of activation time is discussed. The applicability of tandem mass spectrometry with UVPD is demonstrated for wax esters from natural sources. The UHPLC analysis of jojoba oil proves the compatibility of MS2 UVPD with the chromatography time scale, and a direct infusion is used to analyze wax esters from vernix caseosa. Data shows the potential of UVPD and its combination with CID or HCD in advancing our understanding of wax ester structures.

Zobrazit více v PubMed

Nevenzel JC. Occurrence, function and biosynthesis of wax esters in marine organisms. Lipids. 1970. 10.1007/BF02531462. PubMed

Kunst L, Samuels AL. Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res. 2003. 10.1016/S0163-7827(02)00045-0. PubMed

Soliday CL, Blomquist GJ, Jackson LL. Cuticular lipids of insects. VI. Cuticular lipids of the grasshoppers Melanoplus sanguinipes and Melanoplus packardii. J Lipid Res. 1974;4:399–405. PubMed

Smith KR, Thiboutot DM. Thematic review series: Skin lipids. sebaceous gland lipids: friend or foe? J Lipid Res. 2008; 10.1194/jlr.R700015-JLR200. PubMed

Pappas A. Epidermal surface lipids. Dermatoendocrinol. 2009. 10.4161/derm.1.2.7811. PubMed PMC

Rissmann R, Groenink HWW, Weerheim AM, Hoath SB, Ponec M, Bouwstra JA. New insights into ultrastructure, lipid composition and organization of vernix caseosa. J Invest Dermatol. 2006. 10.1038/sj.jid.5700305. PubMed

Phleger CF. Buoyancy in marine fishes: direct and indirect role of lipids. Am Zool. 1998. 10.1093/icb/38.2.321.

Patel S, Nelson DR, Gibbs AG. Chemical and physical analyses of wax ester properties. J Insect Sci. 2001. 10.1673/031.001.0401. PubMed PMC

Kolattukudy PE. Wax esters: chemistry and biosynthesis. In: Pappas A, editor. Lipids and Skin Health. Cham: Springer; 2015. p. 159–83.

Urbanová K, Vrkoslav V, Valterová I, Háková M, Cvačka J. Structural characterization of wax esters by electron ionization mass spectrometry. J Lipid Res. 2012. 10.1194/jlr.D020834. PubMed PMC

Kunst L, Samuels AL. Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res. 2003. 10.1016/S0163-7827(02)00045-0. PubMed

Murphy JD. Plant lipids: biology, utilisation and manipulation. Boca Raton: Taylor & Francis Group; 2005.

Varanasi U, Feldman HR, Malins DC. Molecular basis for formation of lipid sound lens in echolocating cetaceans. Nature. 1975. 10.1038/255340a0. PubMed

Lee R, Hagen W, Kattner G. Lipid storage in marine zooplankton. Mar Ecol Prog Ser. 2006. 10.3354/meps307273.

Rottler AM, Schulz S, Ayasse M. Wax lipids signal nest identity in bumblebee colonies. J Chem Ecol. 2013. 10.1007/s10886-012-0229-0. PubMed

Webster GF, Rawlings AV. Acne and its therapy. 1st ed. Boca Raton: CRC Press; 2007.

Chen J, Green KB, Nichols KK. Compositional analysis of wax esters in human meibomian gland secretions by direct infusion electrospray ionization mass spectrometry. Lipids. 2016. 10.1007/s11745-016-4183-4. PubMed PMC

Nishijima K, Yoneda M, Hirai T, Takakuwa K, Enomoto T. Biology of the vernix caseosa: a review. J Obstet Gynaecol Res. 2019. 10.1111/jog.14103. PubMed

Hargrove JL, Greenspan P, Hartle DK. Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes. Exp Biol Med (Maywood). 2004. 10.1177/1535370204229003. PubMed

Liu J, Zhang R, Tang R, Zhang Y, Guo R, Xu G, Chen D, Huang ZY, Chen Y, Han R, Li W. The role of honey bee derived aliphatic esters in the host-finding behavior of Varroa destructor. Insects. 2022. 10.3390/insects14010024. PubMed PMC

Olszewski K, Dziechciarz P, Trytek M, Borsuk G. A scientific note on the strategy of wax collection as rare behavior of Apis mellifera. Apidologie. 2022. 10.1007/s13592-022-00948-z.

Jetter R, Kunst L. Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J. 2008. 10.1111/j.1365-313X.2008.03467.x. PubMed

Cvačka J, Vrkoslav V. Liquid chromatography – mass spectrometry of wax esters. In: Wenk M, editor. Encyclopedia of lipidomics. Dordrecht: Springer; 2016.

Hauke V, Schreiber L. Ontogenetic and seasonal development of wax composition and cuticular transpiration of ivy (Hedera helix L.) sun and shade leaves. Planta. 1998. 10.1007/s004250050456.

Bianchi, G, Salamini, F Glossy mutants of maize. IV. Chemical composition of normal epicuticular waxes. Maydica. 1975;20:1–3.

Aasen AJ, Hofstetter HH, Iyengar BTR, Holman RT. Identification and analysis of wax esters by mass spectrometry. Lipids. 1971. 10.1007/BF02531236. PubMed

Moldovan Z, Jover E, Bayona JM. Systematic characterisation of long-chain aliphatic esters of wool wax by gas chromatography–electron impact ionisation mass spectrometry. J Chromatogr A. 2002. 10.1016/S0021-9673(02)00073-0. PubMed

Stránský K, Zarevúcka M, Valterová I, Wimmer Z. Gas chromatographic retention data of wax esters. J Chromatogr A. 2006. 10.1016/j.chroma.2006.06.035. PubMed

Regert M, Langlois J, Laval E, Le Hô AS, Pagès-Camagna S. Elucidation of molecular and elementary composition of organic and inorganic substances involved in 19th century wax sculptures using an integrated analytical approach. Anal Chim Acta. 2006. 10.1016/j.aca.2006.06.038. PubMed

Lawerence JF, Iyengar JR, Page BD, Conacher HBS. Characterization of commercial waxes by high-temperature gas chromatography. J Chromatogr A. 1982. 10.1016/S0021-9673(00)84891-8.

Vrkoslav V, Urbanová K, Cvačka J. Analysis of wax ester molecular species by high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A. 2010. 10.1016/j.chroma.2009.12.048. PubMed

Butovich IA, Uchiyama E, McCulley JP. Lipids of human meibum: mass-spectrometric analysis and structural elucidation. J Lipid Res. 2007. 10.1194/jlr.M700237-JLR200. PubMed

Santos S, Schreiber L, Graça J. Cuticular waxes from Ivy leaves (Hedera helix L.): analysis of high-molecular-weight esters. Phytochem Anal. 2007; 10.1002/pca.952. PubMed

Chen J, Green KB, Nichols KK. Characterization of wax esters by electrospray ionization tandem mass spectrometry: double bond effect and unusual product ions. Lipids. 2015. 10.1007/s11745-015-4044-6. PubMed PMC

Iven T, Herrfurth C, Hornung E, Heilmann M, Hofvander P, Stymne S, et al. Wax ester profiling of seed oil by nanoelectrospray ionization tandem mass spectrometry. Plant Methods. 2013. 10.1186/1746-4811-9-24. PubMed PMC

Vrkoslav V, Rumlová B, Strmeň T, Nekvasilová P, Šulc M, Cvačka J. Applicability of low-flow atmospheric pressure chemical ionization and photoionization mass spectrometry with a microfabricated nebulizer for neutral lipids. Rapid Commun Mass Spectrom. 2018. 10.1002/rcm.8086. PubMed

Chen J, Green KB, Nichols KK. Quantitative profiling of major neutral lipid classes in human meibum by direct infusion electrospray ionization mass spectrometry. Invest Ophthalmol Vis Sci. 2013. 10.1167/iovs.12-10317. PubMed PMC

Medvedovici A, Lazou K, D’oosterlinck A, Zhao, Y., Sandra, P. Analysis of jojoba oil by LC-coordination ion spray-MS (LC-CIS-MS). J Sep Sci. 2002. 10.1002/1615-9314(20020201)25:3%3C173:AID-JSSC173%3E3.0.CO;2-K.

Murphy RC. Tandem mass spectrometry of lipids. Cambridge: Royal Society of Chemistry; 2015.

Lam SM, Tong L, Reux B, Lear MJ, Wenk MR, Shui G. Rapid and sensitive profiling of tear wax ester species using high performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A. 2013. 10.1016/j.chroma.2013.08.016. PubMed

Sekosan Ga, West T, Seegers S. LC–MS identification of wax esters in cloudy canola oil. LCGC Suppl. 2014;12(3):16–21.

Tada A, Jin ZL, Sugimoto N, Sato K, Yamazaki T, Tanamoto K. Analysis of the constituents in jojoba wax used as a food additive by LC/MS/MS. Food Hyg Saf Sci Shokuhin Eiseigaku Zasshi. 2005. 10.3358/shokueishi.46.198. PubMed

Butovich IA, Wojtowicz JC, Molai M. Human tear film and meibum. Very long chain wax esters and (O-acyl)-omega-hydroxy fatty acids of meibum. J Lipid Res. 2009. 10.1194/jlr.M900252-JLR200. PubMed PMC

Mitchell TW, Pham H, Thomas MC, Blanksby SJ. Identification of double bond position in lipids: from GC to OzID. J Chromatogr B. 2009. 10.1016/j.jchromb.2009.01.017. PubMed

Pepe C, Dagaut J, Scribe P, Saliot A. Double bond location in monounsaturated wax esters by gas chromatography/mass spectrometry of their dimethyl disulphide derivatives. J Mass Spectrom. 1993. 10.1002/oms.1210281113.

Vrkoslav V, Háková M, Pecková K, Urbanová K, Cvačka J. Localization of double bonds in wax esters by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry utilizing the fragmentation of acetonitrile-related adducts. Anal Chem. 2011. 10.1021/ac1030682. PubMed

Vrkoslav V, Cvačka J. Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A. 2012. 10.3390/molecules26216468. PubMed

Kalužíková A, Vrkoslav V, Harazim E, Hoskovec M, Plavka R, Buděšínský M, Bosáková Z, Cvačka J. Cholesteryl esters of ω-(O-acyl)-hydroxy fatty acids in vernix caseosa. J Lipid Res. 2017. 10.1194/jlr.M075333. PubMed PMC

Háková E, Vrkoslav V, Míková R, Schwarzová-Pecková K, Bosáková Z, Cvačka J. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry. Anal Bioanal Chem. 2015. 10.1007/s00216-015-8537-1. PubMed

Michaud AL, Diau GY, Abril R, Brenna JT. Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry. Anal Biochem. 2002. 10.1016/S0003-2697(02)00037-4. PubMed

Van Pelt CK, Carpenter BK, Brenna JT. Studies of structure and mechanism in acetonitrile chemical ionization tandem mass spectrometry of polyunsaturated fatty acid methyl esters. J Am Soc Mass Spectrom. 1999. 10.1016/S1044-0305(99)00109-9. PubMed

Šubčíková L, Hoskovec M, Vrkoslav V, Čmelíková T, Háková E, Míková R, et al. Analysis of 1,2-diol diesters in vernix caseosa by high-performance liquid chromatography - atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A. 2015. 10.1016/j.chroma.2014.11.075. PubMed

Horká P, Vrkoslav V, Kindl J, Schwarzová-Pecková K, Cvačka J. Structural characterization of unusual fatty acid methyl esters with double and triple bonds using HPLC/APCI-MS2 with acetonitrile in-source derivatization. Molecules. 2021. 10.3390/molecules26216468. PubMed PMC

Cvačka J, Vrkoslav V, Strnad Š. Structural characterization of lipids using advanced mass spectrometry approaches. In: Holčapek M, Ekroos K, Editor. Mass Spectrometry for Lipidomics. Chichester, UK: John Wiley & Sons, Ltd; 2023. pp.183–226.

Cheng S, Zhao X, Ma X. Chapter 9. Structural analysis of lipids using advanced tandem MS methods. In Advance fragmentation methods in biomolecular mass spectrometry. London, UK: The Royal Society of Chemistry, 2020. pp. 209–34.

Yoo HJ, Håkansson K. Determination of double bond location in fatty acids by manganese adduction and electron induced dissociation. Anal Chem. 2010. 10.1021/ac101217x. PubMed

Jones JW, Thompson CJ, Carter CL, Kane MA. Electron-induced dissociation (EID) for structure characterization of glycerophosphatidylcholine: determination of double-bond positions and localization of acyl chains. J Mass Spectrom. 2015. 10.1002/jms.3698. PubMed PMC

Born MEN, Prentice BM. Structural elucidation of phosphatidylcholines from tissue using electron induced dissociation. Int J Mass Spectrom. 2020. 10.1016/j.ijms.2020.116338. PubMed PMC

Brodbelt JS, Morrison LJ, Santos I. Ultraviolet photodissociation mass spectrometry for analysis of biological molecules. Chem Rev. 2020. 10.1021/acs.chemrev.9b00440. PubMed PMC

Ly T, Julian RR. Ultraviolet photodissociation: developments towards applications for mass-spectrometry-based proteomics. Angew Chem Int Ed. 2009. 10.1002/anie.200900613. PubMed

Zhang L, Reilly JP. Peptide de novo sequencing using 157 nm photodissociation in a tandem time-of-flight mass spectrometer. Anal Chem. 2010. 10.1021/ac902050y. PubMed

Julia BM, de Oliveira E. Photodissociation mass spectrometry of peptides and proteins. In: Meyers RA, editor. Encyclopedia of Analytical Chemistry. Chichester, UK: John Wiley & Sons, Ltd; 2018. pp. 1–22.

Ryan E, Nguyen CQN, Shiea C, Reid GE. Detailed structural characterization of sphingolipids via 193 nm ultraviolet photodissociation and ultra high resolution tandem mass spectrometry. J Am Soc Mass Spectrom. 2017. 10.1007/s13361-017-1668-1. PubMed

Klein DR, Brodbelt JS. Structural characterization of phosphatidylcholines using 193 nm ultraviolet photodissociation mass spectrometry. Anal Chem. 2017. 10.1021/acs.analchem.6b03353. PubMed PMC

Williams PE, Klein DR, Greer SM, Brodbelt JS. Pinpointing double bond and sn-positions in glycerophospholipids via hybrid 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. J Am Chem Soc. 2017. 10.1021/jacs.7b06416. PubMed PMC

Klein DR, Blevins MS, Macias LA, Douglass MV, Trent MS, Brodbelt JS. Localization of double bonds in bacterial glycerophospholipids using 193 nm ultraviolet photodissociation in the negative mode. Anal Chem. 2020. 10.1021/acs.analchem.0c00221. PubMed PMC

Blevins MS, Klein DR, Brodbelt JS. Localization of cyclopropane modifications in bacterial lipids via 213 nm ultraviolet photodissociation mass spectrometry. Anal Chem. 2019. 10.1021/acs.analchem.9b01038. PubMed PMC

West H, Reid GE. Hybrid 213 nm photodissociation of cationized Sterol lipid ions yield [M]+. Radical products for improved structural characterization using multistage tandem mass spectrometry. Anal Chim Acta. 2021. 10.1016/j.aca.2020.10.013. PubMed

Fang M, Rustam Y, Palmieri M, Sieber OM, Reid GE. Evaluation of ultraviolet photodissociation tandem mass spectrometry for the structural assignment of unsaturated fatty acid double bond positional isomers. Anal Bioanal Chem. 2020. 10.1007/s00216-020-02446-6. PubMed

Buenger EW, Reid GE. Shedding light on isomeric FAHFA lipid structures using 213 nm ultraviolet photodissociation mass spectrometry. Eur J Mass Spectrom. 2020. 10.1177/1469066720960341. PubMed

Míková R, Vrkoslav V, Hanus R, Háková E, Hábová Z, Doležal A, et al. Newborn boys and girls differ in the lipid composition of vernix caseosa. PLoS ONE. 2014. 10.1371/journal.pone.0099173. PubMed PMC

Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Subramaniam S. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007. 10.1093/nar/gkl838. PubMed PMC

Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T, Ejsing CS, et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J Lipid Res. 2020. 10.1194/jlr.S120001025. PubMed PMC

Mark F, Murphy RC. Electrospray mass spectrometry of human hair wax esters. J Lipid Res. 2007. 10.1194/jlr.D700002-JLR200. PubMed

Yang NC, Yang DDH. Photochemical reactions of ketones in solution. J Am Chem Soc. 1958. 10.1021/ja01544a092.

Chen C. The past, present, and future of the Yang reaction. Org Biomol Chem. 2016. 10.1039/C6OB01214K. PubMed PMC

Ausloos P. The photolysis of alkyl esters. Can J Chem. 1958. 10.1139/v58-054.

Norrish RGW, Appleyard MES. 191. Primary photochemical reactions. Part IV. Decomposition of methyl ethyl ketone and methyl butyl ketone. J. Chem. Soc. 1934. 10.1039/JR9340000874.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...