Structural characterization of wax esters by electron ionization mass spectrometry
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
22058425
PubMed Central
PMC3243477
DOI
10.1194/jlr.d020834
PII: S0022-2275(20)40814-4
Knihovny.cz E-resources
- MeSH
- Esters chemistry MeSH
- Spectrometry, Mass, Electrospray Ionization methods MeSH
- Fatty Acids, Unsaturated chemistry MeSH
- Gas Chromatography-Mass Spectrometry methods MeSH
- Reference Standards MeSH
- Waxes chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Esters MeSH
- Fatty Acids, Unsaturated MeSH
- Waxes MeSH
The interpretation of the electron ionization mass spectra of straight-chain and methyl-branched saturated and unsaturated wax esters (WEs) is discussed in this study based on the spectra of 154 standards. The most important fragments indicative of the structure of the acid and alcohol chains are identified and summarized for WEs with various number of double bonds in the chains. Briefly, most WEs provide acylium ions allowing structural characterization of the acid part, whereas the alcohol part gives corresponding alkyl radical cations. The elemental composition of selected important fragments is established from a high-resolution accurate mass analysis. The ion abundances are discussed with respect to the length and unsaturation of the aliphatic chains. The interpretation of the spectra of branched or unsaturated WEs requires the recognition of small but important peaks that are difficult to discern among the other fragments. We demonstrate that such fragments are easily detected in differential mass spectra. This approach requires spectra of WE standards (e.g., straight-chain analogs in the case of branched WEs) recorded under the same experimental conditions. The WEs mass spectral database provided in the supplemental data can be used as a reference for the analysis of the GC/EI-MS data.
See more in PubMed
Gunstone F. D., Harwood J. L., Dijkstra A. J. 2007. The Lipid Handbook, CRC Press, Boca Raton, FL.
Riederer M., Müller C. 2006. Biology of the Plant Cuticle, Blackwell Publishing Ltd; Oxford, UK.
Lee R. F., Hagen W., Kattner G. 2006. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307: 273–306.
Nelson D. R., Blomquist G. J. 1995. : Insect waxes. Waxes, chemistry, molecular biology and functions. Hamilton R. J., editor The Oily Press, Dundee, Scotland: 1–90.
Varansi U., Feldman H. R., Malins D. C. 1975. Molecular basis for formation of lipid sound lens in echolocating cetaceans. Nature. 255: 340–343. PubMed
Rissmann R., Groenink H. W. W., Weerheim A. M., Hoath S. B., Ponec M., Bouwstra J. A. 2006. New insights into ultrastructure, lipid composition and organization of vernix caseosa. J. Invest. Dermatol. 126: 1823–1833. PubMed
Rawlings A. V. 1995. Skin waxes: their composition, properties, structures and biological significance. : Waxes, chemistry, molecular biology and functions. Hamilton R. J., editor The Oily Press, Dundee, Scotland: 223–256.
Masukawa Y., Tsujimura H., Imokawa G. 2005. A systematic method for the sensitive and specific determination of hair lipids in combination with chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 823: 131–142. PubMed
Koçer M., Guldur T., Akarcay M., Miman M. C., Beker G. 2008. Investigation of age, sex and menstrual stage variation in human cerumen lipid composition by high performance thin layer chromatography. J. Laryngol. Otol. 122: 881–886. PubMed
Butovich I. A., Uchiyama E., McCulley J. P. 2007. Lipids of human meibum: mass-spectrometric analysis and structural elucidation. J. Lipid Res. 48: 2220–2235. PubMed
Hargrove J. L., Greenspan P., Hartle D. K. 2004. Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes. Exp. Biol. Med.(Maywood) 229: 215–226. PubMed
Hamilton R. J. 1995. Commercial waxes: their composition and applications. : Waxes: Chemistry, Molecular Biology and Functions. Hamilton R. J., editor The Oily Press, Dundee, Scotland: 257–310.
Vrkoslav V., Míková R., Cvacˇka J. 2009. Characterization of natural wax esters by MALDI-TOF mass spectrometry. J. Mass Spectrom. 44: 101–110. PubMed
Vrkoslav V., Urbanová K., Cvacˇka J. 2010. Analysis of wax ester molecular species by high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A. 1217: 4184–4194. PubMed
Vrkoslav V., Háková M., Pecková K., Urbanová K., Cvacˇka J. 2011. Localization of double bonds in wax esters by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry utilizing the fragmentation of acetonitrile-related adducts. Anal. Chem. 83: 2978–2986. PubMed
Aasen A. J., Hofstett H. H., Iyengar B. T. R., Holman R. T. 1971. Identification and analysis of wax esters by mass spectrometry. Lipids. 6: 502–507. PubMed
Vajdi M., Nawar W. W., Merritt C. 1981. GC/MS analysis of some long chain esters, ketones and propanediol diesters. J. Am. Oil Chem. Soc. 58: 106–110.
Audisio G., Rossini A., Bianchi G., Avato P. 1987. GC-MS determination of mixtures of long chain aliphatic esters. J. High Resolut. Chromatogr. 10: 594–597.
Arrendale R. F., Severson R. F., Chortyk O. T., Stephenson M. G. 1988. Isolation and identification of the wax esters from the cuticular waxes of green tobacco leaf. Beitrage zur Tabakforschung International. 14: 67–84.
Bianchi G., Tava A., Vlahov G., Pozzi N. 1994. Chemical structure of long-chain esters from “sansa” olive oil. J. Am. Oil Chem. Soc. 71: 365–369.
Reiter B., Lechner M., Lorbeer E., Aichholz R. 1999. Isolation and characterization of wax esters in fennel and caraway seed oils by SPE-GC. J. High Resolut. Chromatogr. 22: 514–520.
Zhang L. X., Yun Y. F., Liang Y. Z., Cao D. S. 2010. Discovery of mass spectral characteristics and automatic identification of wax esters from gas chromatography mass spectrometry data. J. Chromatogr. A. 1217: 3695–3701. PubMed
Spencer G. F. 1979. Alkoxy-acyl combinations in the wax esters from winterized sperm whale oil by gas chromatography-mass spectrometry. J. Am. Oil Chem. Soc. 56: 642–646.
Pereira A. S., Siqueira D. S., Elias V. O., Simoneit B. R., Cabral J. A., Aquino Neto F. R. 2002. Three series of high molecular weight alkanoates found in Amazonian plants. Phytochemistry. 61: 711–719. PubMed
Stránský K., Zarevúcka M., Valterová I., Wimmer Z. 2006. Gas chromatographic retention data of wax esters. J. Chromatogr. A. 1128: 208–219. PubMed
Nystrom R. F., Brown W. G. 1947. Reduction of organic compounds by lithium aluminum hydride. I. Aldehydes, ketones, esters, acid chlorides and acid anhydrides. J. Am. Chem. Soc. 69: 1197–1199.
McFadden W. H., Boggs L. E., Buttery R. G. 1966. Specific rearrangements in mass spectra of butyl hexanoates and similar aliphatic esters. J. Phys. Chem. 70: 3516–3523.
Christie W. W. 2011. The AOCS Lipid Library (Ed. W.W. Christie), Available at http://lipidlibrary.aocs.org. Accessed September 2011.
National Institute of Standards and Technology (NIST) Library. 2005. Edition, Gaithersburg, MD, USA.
Fellenberg A. J., Johnson D. W., Poulos A., Sharp P. 1987. Simple mass-spectrometric differentiation of the normal-3, normal-6 and normal-9 series of methylene interrupted polyenoic acids. Biomed. Environ. Mass Spectrom. 14: 127–129.
Amirav A., Gordin A., Poliak M., Fialkov A. B. 2008. Gas chromatography-mass spectrometry with supersonic molecular beams. J. Mass Spectrom. 43: 141–163. PubMed
Structural characterization of wax esters using ultraviolet photodissociation mass spectrometry
Metabolomics on Apple (Malus domestica) Cuticle-Search for Authenticity Markers
Smells Like Home: Chemically Mediated Co-Habitation of Two Termite Species in a Single Nest