Metabolomics on Apple (Malus domestica) Cuticle-Search for Authenticity Markers

. 2024 Apr 24 ; 13 (9) : . [epub] 20240424

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38731678

Grantová podpora
NAZV QK1910104 Ministry of Agriculture of the Czech Republic
LM2023064 METROFOOD-CZ

The profile of secondary metabolites present in the apple cuticular layer is not only characteristic of a particular apple cultivar; it also dynamically reflects various external factors in the growing environment. In this study, the possibility of authenticating apple samples by analyzing their cuticular layer extracts was investigated. Ultra-high-performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) was employed for obtaining metabolomic fingerprints. A total of 274 authentic apple samples from four cultivars harvested in the Czech Republic and Poland between 2020 and 2022 were analyzed. The complex data generated, processed using univariate and multivariate statistical methods, enabled the building of classification models to distinguish apple cultivars as well as their geographical origin. The models showed very good performance in discriminating Czech and Polish samples for three out of four cultivars: "Gala", "Golden Delicious" and "Idared". Moreover, the validity of the models was tested over several harvest seasons. In addition to metabolites of the triterpene biosynthetic pathway, the diagnostic markers were mainly wax esters. "Jonagold", which is known to be susceptible to mutations, was the only cultivar for which an unambiguous classification of geographical origin was not possible.

Zobrazit více v PubMed

Shanbandeh M. Apple Production Worldwide in 2022. [(accessed on 29 February 2024)]. Available online: https://www.statista.com/statistics/237605/production-of-apples-worldwide-by-region-2007/

Bat K., Vidrih R., Nečemer M., Mozetič Vodopivec B., Mulič I., Kump P., Ogrinc N. Characterization of Slovenian apples with respect to their botanical and geographical origin and agricultural production practice. Food Technol. Biotechnol. 2012;50:107–116.

Wu H., Yue T., Yuan Y. Authenticity Tracing of Apples According to Variety and Geographical Origin Based on Electronic Nose and Electronic Tongue. Food Anal. Methods. 2018;11:522–532. doi: 10.1007/s12161-017-1023-y. DOI

Li C., Li L., Wu Y., Lu M., Yang Y., Li L. Apple Variety Identification Using Near-Infrared Spectroscopy. J. Spectrosc. 2018;2018:e6935197. doi: 10.1155/2018/6935197. DOI

Bian H., Sheng L., Yao H., Ji R., Yu Y., Chen R., Wei D., Han Y. Application of fluorescence spectroscopy in classifying apple juice according to the variety. Optik. 2021;231:166361. doi: 10.1016/j.ijleo.2021.166361. DOI

Guo J., Yue T., Yuan Y. Feature selection and recognition from nonspecific volatile profiles for discrimination of apple juices according to variety and geographical origin. J. Food Sci. 2012;77:C1090–C1096. doi: 10.1111/j.1750-3841.2012.02914.x. PubMed DOI

Medina S., Perestrelo R., Santos R., Pereira R., Câmara J.S. Differential volatile organic compounds signatures of apple juices from Madeira Island according to variety and geographical origin. Microchem. J. 2019;150:104094. doi: 10.1016/j.microc.2019.104094. DOI

Mimmo T., Camin F., Bontempo L., Capici C., Tagliavini M., Cesco S., Scampicchio M. Traceability of different apple varieties by multivariate analysis of isotope ratio mass spectrometry data. Rapid Commun. Mass Spectrom. 2015;29:1984–1990. doi: 10.1002/rcm.7306. PubMed DOI

Brombin V., Mistri E., Bianchini G. Multi stable isotope ratio analysis for the traceability of northern Italian apples. Food Chem. X. 2022;16:100514. doi: 10.1016/j.fochx.2022.100514. PubMed DOI PMC

Liu X., Zhao Y., Mu J., Zhang J., Zhang A. Determination of geographical origin of concentrated apple juice through analysis of stable isotopic and mineral elemental fingerprints: Preliminary results. J. Sci. Food Agric. 2021;101:3795–3803. doi: 10.1002/jsfa.11012. PubMed DOI

Belding R.D., Blankenship S.M., Young E., Leidy R.B. Composition and Variability of Epicuticular Waxes in Apple Cultivars. J. Am. Soc. Hort. Sci. 1998;123:348–356. doi: 10.21273/JASHS.123.3.348. DOI

Yang Y., Zhou B., Zhang J., Wang C., Liu C., Liu Y., Zhu X., Ren X. Relationships between cuticular waxes and skin greasiness of apples during storage. Postharv. Biol. Technol. 2017;131:55–67. doi: 10.1016/j.postharvbio.2017.05.006. DOI

Wu W., Jiang B., Liu R., Han Y., Fang X., Mu H., Farag M., Simal-Gandara J., Prieto M.A., Chen H., et al. Structures and functions of cuticular wax in postharvest fruit and its regulation: A comprehensive review with future perspectives. Engineering. 2023;23:118–129. doi: 10.1016/j.eng.2022.12.006. DOI

Leide J., Xavier de Souza A., Papp I., Riederer M. Specific characteristics of the apple fruit cuticle: Investigation of early and late season cultivars ‘Prima’ and ‘Florina’ (Malus domestica Borkh.) Sci. Hortic. 2018;229:137–147. doi: 10.1016/j.scienta.2017.10.042. DOI

Shepherd T., Wynne Griffiths D. The effects of stress on plant cuticular waxes. New Phytol. 2006;171:469–499. doi: 10.1111/j.1469-8137.2006.01826.x. PubMed DOI

Fernandez-Moreno J.-P., Malitsky S., Lashbrooke J., Biswal A.K., Racovita R.C., Mellerowicz E.J., Jetter R., Orzaez D., Aharoni A., Granell A. An efficient method for medium throughput screening of cuticular wax composition in different plant species. Metabolomics. 2016;12:73. doi: 10.1007/s11306-016-0982-0. DOI

Lara I., Belge B., Goulao L.F. A Focus on the Biosynthesis and Composition of Cuticle in Fruits. J. Agric. Food Chem. 2015;63:4005–4019. doi: 10.1021/acs.jafc.5b00013. PubMed DOI

Li F., Min D., Song B., Shao S., Zhang X. Ethylene effects on apple fruit cuticular wax composition and content during cold storage. Postharv. Biol. Technol. 2017;134:98–105. doi: 10.1016/j.postharvbio.2017.08.011. DOI

Li F., Min D., Ren C., Dong L., Shu P., Cui X., Zhang X. Ethylene altered fruit cuticular wax, the expression of cuticular wax synthesis-related genes and fruit quality during cold storage of apple (Malus domestica Borkh. C.v. Starkrimson) fruit. Postharv. Biol. Technol. 2019;149:58–65. doi: 10.1016/j.postharvbio.2018.11.016. DOI

Chen J., Green K.B., Nichols K.K. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions. Lipids. 2015;50:821–836. doi: 10.1007/s11745-015-4044-6. PubMed DOI PMC

Tada A., Jin Z.-L., Sugimoto N., Sato K., Yamazaki T., Tanamoto K. Analysis of the constituents in jojoba wax used as a food additive by LC/MS/MS. Shokuhin Eiseigaku Zasshi. J. Food Hyg. Soc. Jpn. 2005;46:198–204. doi: 10.3358/shokueishi.46.198. PubMed DOI

McGhie T.K., Hudault S., Lunken R.C.M., Christeller J.T. Apple peels, from seven cultivars, have lipase-inhibitory activity and contain numerous ursenoic acids as identified by LC-ESI-QTOF-HRMS. J. Agric. Food Chem. 2012;60:482–491. doi: 10.1021/jf203970j. PubMed DOI

Poirier B.C., Buchanan D.A., Rudell D.R., Mattheis J.P. Differential Partitioning of Triterpenes and Triterpene Esters in Apple Peel. J. Agric. Food Chem. 2018;66:1800–1806. doi: 10.1021/acs.jafc.7b04509. PubMed DOI

Andre C.M., Greenwood J.M., Walker E.G., Rassam M., Sullivan M., Evers D., Perry N.B., Laing W.A. Anti-inflammatory procyanidins and triterpenes in 109 apple varieties. J. Agric. Food Chem. 2012;60:10546–10554. doi: 10.1021/jf302809k. PubMed DOI

Andre C.M., Larsen L., Burgess E.J., Jensen D.J., Cooney J.M., Evers D., Zhang J., Perry N.B., Laing W.A. Unusual immuno-modulatory triterpene-caffeates in the skins of russeted varieties of apples and pears. J. Agric. Food Chem. 2013;61:2773–2779. doi: 10.1021/jf305190e. PubMed DOI

Tsugawa H., Kind T., Nakabayashi R., Yukihira D., Tanaka W., Cajka T., Saito K., Fiehn O., Arita M. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal. Chem. 2016;88:7946–7958. doi: 10.1021/acs.analchem.6b00770. PubMed DOI PMC

Dührkop K., Fleischauer M., Ludwig M., Aksenov A.A., Melnik A.V., Meusel M., Dorrestein P.C., Rousu J., Böcker S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods. 2019;16:4. doi: 10.1038/s41592-019-0344-8. PubMed DOI

Dührkop K., Nothias L.-F., Fleischauer M., Reher R., Ludwig M., Hoffmann M.A., Petras D., Gerwick W.H., Rousu J., Dorrestein P.C., et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 2021;39:4. doi: 10.1038/s41587-020-0740-8. PubMed DOI

Dührkop K., Shen H., Meusel M., Rousu J., Böcker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA. 2015;112:12580–12585. doi: 10.1073/pnas.1509788112. PubMed DOI PMC

Kim H.W., Wang M., Leber C.A., Nothias L.-F., Reher R., Kang K.B., van der Hooft J.J.J., Dorrestein P.C., Gerwick W.H., Cottrell G.W. NPClassifier: A Deep Neural Network-Based Structural Classification Tool for Natural Products. J. Nat. Prod. 2021;84:2795–2807. doi: 10.1021/acs.jnatprod.1c00399. PubMed DOI PMC

Djoumbou Feunang Y., Eisner R., Knox C., Chepelev L., Hastings J., Owen G., Fahy E., Steinbeck C., Subramanian S., Bolton E., et al. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 2016;8:61. doi: 10.1186/s13321-016-0174-y. PubMed DOI PMC

Karp P.D., Billington R., Caspi R., Fulcher C.A., Latendresse M., Kothari A., Keseler I.M., Krummenacker M., Midford P.E., Ong Q., et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief. Bioinform. 2019;20:1085–1093. doi: 10.1093/bib/bbx085. PubMed DOI PMC

Sorokina M., Merseburger P., Rajan K., Yirik M.A., Steinbeck C. COCONUT online: Collection of open natural products database. J. Cheminform. 2021;13:2. doi: 10.1186/s13321-020-00478-9. PubMed DOI PMC

Wishart D.S., Guo A.C., Oler E., Wang F., Anjum A., Peters H., Dizon R., Sayeeda Z., Tian S., Lee B.L., et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022;50:D622–D631. doi: 10.1093/nar/gkab1062. PubMed DOI PMC

Reisdorph N.A., Walmsley S., Reisdorph R. A Perspective and Framework for Developing Sample Type Specific Databases for LC/MS-Based Clinical Metabolomics. Metabolites. 2019;10:8. doi: 10.3390/metabo10010008. PubMed DOI PMC

Blaženović I., Kind T., Ji J., Fiehn O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites. 2018;8:31. doi: 10.3390/metabo8020031. PubMed DOI PMC

Sumner L.W., Amberg A., Barrett D., Beale M.H., Beger R., Daykin C.A., Fan T.W.-M., Fiehn O., Goodacre R., Griffin J.L., et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI) Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC

Bylesjö M., Rantalainen M., Cloarec O., Nicholson J.K., Holmes E., Trygg J. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 2006;20:341–351. doi: 10.1002/cem.1006. DOI

Triba M.N., Le Moyec L., Amathieu R., Goossens C., Bouchemal N., Nahon P., Rutledge D.N., Savarin P. PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol. BioSyst. 2015;11:13–19. doi: 10.1039/c4mb00414k. PubMed DOI

Cocchi M., Biancolillo A., Marini F. Chapter Ten—Chemometric Methods for Classification and Feature Selection. In: Jaumot J., Bedia C., Tauler R., editors. Comprehensive Analytical Chemistry. Volume 82. Elsevier; Amsterdam, The Netherlands: 2018. pp. 265–299. Data Analysis for Omic Sciences: Methods and Applications. DOI

Pennington J.A.T. Food Composition Databases for Bioactive Food Components. J. Food Comp. Anal. 2002;15:419–434. doi: 10.1006/jfca.2002.1073. DOI

Ramírez-Ambrosi M., López-Márquez D.M., Abad-García B., Dapena E., Berrueta L.Á., Gallo B. Comparative study of phenolic profile of fruit and juice samples of a progeny of ‘Meana’ × ‘Florina’ from an Asturian cider apple breeding program. Eur. Food Res. Technol. 2015;241:769–784. doi: 10.1007/s00217-015-2502-2. DOI

Sud M., Fahy E., Cotter D., Brown A., Dennis E.A., Glass C.K., Merrill Jr A.H., Murphy R.C., Raetz C.R.H., Russell D.W., et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007;35:D527–D532. doi: 10.1093/nar/gkl838. PubMed DOI PMC

Veraverbeke E.A., Lammertyn J., Saevels S., Nicolaï B.M. Changes in chemical wax composition of three different apple (Malus domestica Borkh.) cultivars during storage. Postharv. Biol. Technol. 2001;23:197–208. doi: 10.1016/S0925-5214(01)00128-4. DOI

Klein B., Falk R.B., Thewes F.R., Anese R.d.O., dos Santos I.D., Ribeiro S.R., Donadel J.Z., Brackmann A., Barin J.S., Cichoski A.J., et al. Dynamic controlled atmosphere: Effects on the chemical composition of cuticular wax of ‘Cripps Pink’ apples after long-term storage. Postharv. Biol. Technol. 2020;164:111170. doi: 10.1016/j.postharvbio.2020.111170. DOI

Morice I.M., Shorland F.B. Composition of the surface waxes of apple fruits and changes during storage. J. Sci. Food Agric. 1973;24:1331–1339. doi: 10.1002/jsfa.2740241104. PubMed DOI

Urbanova K., Vrkoslav V., Valterova I., Haková M., Cvacka J. Structural characterization of wax esters by electron ionization mass spectrometry. J. Lipid Res. 2011;53:204–213. doi: 10.1194/jlr.d020834. PubMed DOI PMC

Vrkoslav V., Urbanová K., Cvacka J. Analysis of wax ester molecular species by high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A. 2010;1217:4184–4194. doi: 10.1016/j.chroma.2009.12.048. PubMed DOI

Vrkoslav V., Urbanova K., Haková M., Cvacka J. Analysis of wax esters by silver-ion high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2013;1302:105–110. doi: 10.1016/j.chroma.2013.06.031. PubMed DOI

Sekosan G. LC-MS Identification of Wax Esters in Cloudy Canola Oil. LCGC Suppl. 2014;12:16–21.

Iven T., Herrfurth C., Hornung E., Heilmann M., Hofvander P., Stymne S., Feussner I. Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry. Plant Methods. 2013;9:24. doi: 10.1186/1746-4811-9-24. PubMed DOI PMC

Liebisch G., Fahy E., Aoki J., Dennis E.A., Durand T., Ejsing C.S., Fedorova M., Feussner I., Griffiths W.J., Köfeler H., et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020;61:1539–1555. doi: 10.1194/jlr.s120001025. PubMed DOI PMC

Liberati-Čizmek A.-M., Biluš M., Brkić A.L., Barić I.C., Bakula M., Hozić A., Cindrić M. Analysis of Fatty Acid Esters of Hydroxyl Fatty Acid in Selected Plant Food. Plant Foods Hum. Nutr. 2019;74:235–240. doi: 10.1007/s11130-019-00728-8. PubMed DOI

Mandrekar J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010;5:1315–1316. doi: 10.1097/jto.0b013e3181ec173d. PubMed DOI

Westerhuis J.A., Hoefsloot H.C.J., Smit S., Vis D.J., Smilde A.K., van Velzen E.J.J., van Duijnhoven J.P.M., van Dorsten F.A. Assessment of PLSDA cross validation. Metabolomics. 2008;4:81–89. doi: 10.1007/s11306-007-0099-6. DOI

Spickett C.M., Pitt A.R. Oxidative Lipidomics Coming of Age: Advances in Analysis of Oxidized Phospholipids in Physiology and Pathology. Antioxid. Redox Signal. 2015;22:1646–1666. doi: 10.1089/ars.2014.6098. PubMed DOI PMC

Tessmer M.A., Antoniolli L.R., Appezzato-da-Glória B. Cuticle of “Gala” and “Galaxy” apples cultivars under different environmental conditions. Braz. Arch. Biol. Technol. 2012;55:709–714. doi: 10.1590/S1516-89132012000500010. DOI

Lommen A., Godejohann M., Venema D.P., Hollman P.C., Spraul M. Application of directly coupled HPLC-NMR-MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel. Anal. Chem. 2000;72:1793–1797. doi: 10.1021/ac9912303. PubMed DOI

Awad M.A., de Jager A., van Westing L.M. Flavonoid and chlorogenic acid levels in apple fruit: Characterisation of variation. Sci. Hort. 2000;83:249–263. doi: 10.1016/S0304-4238(99)00124-7. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...