Metabolomics on Apple (Malus domestica) Cuticle-Search for Authenticity Markers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NAZV QK1910104
Ministry of Agriculture of the Czech Republic
LM2023064
METROFOOD-CZ
PubMed
38731678
PubMed Central
PMC11083494
DOI
10.3390/foods13091308
PII: foods13091308
Knihovny.cz E-zdroje
- Klíčová slova
- UHPLC-HRMS/MS, classification models, markers, metabolomic fingerprints, wax esters,
- Publikační typ
- časopisecké články MeSH
The profile of secondary metabolites present in the apple cuticular layer is not only characteristic of a particular apple cultivar; it also dynamically reflects various external factors in the growing environment. In this study, the possibility of authenticating apple samples by analyzing their cuticular layer extracts was investigated. Ultra-high-performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) was employed for obtaining metabolomic fingerprints. A total of 274 authentic apple samples from four cultivars harvested in the Czech Republic and Poland between 2020 and 2022 were analyzed. The complex data generated, processed using univariate and multivariate statistical methods, enabled the building of classification models to distinguish apple cultivars as well as their geographical origin. The models showed very good performance in discriminating Czech and Polish samples for three out of four cultivars: "Gala", "Golden Delicious" and "Idared". Moreover, the validity of the models was tested over several harvest seasons. In addition to metabolites of the triterpene biosynthetic pathway, the diagnostic markers were mainly wax esters. "Jonagold", which is known to be susceptible to mutations, was the only cultivar for which an unambiguous classification of geographical origin was not possible.
Zobrazit více v PubMed
Shanbandeh M. Apple Production Worldwide in 2022. [(accessed on 29 February 2024)]. Available online: https://www.statista.com/statistics/237605/production-of-apples-worldwide-by-region-2007/
Bat K., Vidrih R., Nečemer M., Mozetič Vodopivec B., Mulič I., Kump P., Ogrinc N. Characterization of Slovenian apples with respect to their botanical and geographical origin and agricultural production practice. Food Technol. Biotechnol. 2012;50:107–116.
Wu H., Yue T., Yuan Y. Authenticity Tracing of Apples According to Variety and Geographical Origin Based on Electronic Nose and Electronic Tongue. Food Anal. Methods. 2018;11:522–532. doi: 10.1007/s12161-017-1023-y. DOI
Li C., Li L., Wu Y., Lu M., Yang Y., Li L. Apple Variety Identification Using Near-Infrared Spectroscopy. J. Spectrosc. 2018;2018:e6935197. doi: 10.1155/2018/6935197. DOI
Bian H., Sheng L., Yao H., Ji R., Yu Y., Chen R., Wei D., Han Y. Application of fluorescence spectroscopy in classifying apple juice according to the variety. Optik. 2021;231:166361. doi: 10.1016/j.ijleo.2021.166361. DOI
Guo J., Yue T., Yuan Y. Feature selection and recognition from nonspecific volatile profiles for discrimination of apple juices according to variety and geographical origin. J. Food Sci. 2012;77:C1090–C1096. doi: 10.1111/j.1750-3841.2012.02914.x. PubMed DOI
Medina S., Perestrelo R., Santos R., Pereira R., Câmara J.S. Differential volatile organic compounds signatures of apple juices from Madeira Island according to variety and geographical origin. Microchem. J. 2019;150:104094. doi: 10.1016/j.microc.2019.104094. DOI
Mimmo T., Camin F., Bontempo L., Capici C., Tagliavini M., Cesco S., Scampicchio M. Traceability of different apple varieties by multivariate analysis of isotope ratio mass spectrometry data. Rapid Commun. Mass Spectrom. 2015;29:1984–1990. doi: 10.1002/rcm.7306. PubMed DOI
Brombin V., Mistri E., Bianchini G. Multi stable isotope ratio analysis for the traceability of northern Italian apples. Food Chem. X. 2022;16:100514. doi: 10.1016/j.fochx.2022.100514. PubMed DOI PMC
Liu X., Zhao Y., Mu J., Zhang J., Zhang A. Determination of geographical origin of concentrated apple juice through analysis of stable isotopic and mineral elemental fingerprints: Preliminary results. J. Sci. Food Agric. 2021;101:3795–3803. doi: 10.1002/jsfa.11012. PubMed DOI
Belding R.D., Blankenship S.M., Young E., Leidy R.B. Composition and Variability of Epicuticular Waxes in Apple Cultivars. J. Am. Soc. Hort. Sci. 1998;123:348–356. doi: 10.21273/JASHS.123.3.348. DOI
Yang Y., Zhou B., Zhang J., Wang C., Liu C., Liu Y., Zhu X., Ren X. Relationships between cuticular waxes and skin greasiness of apples during storage. Postharv. Biol. Technol. 2017;131:55–67. doi: 10.1016/j.postharvbio.2017.05.006. DOI
Wu W., Jiang B., Liu R., Han Y., Fang X., Mu H., Farag M., Simal-Gandara J., Prieto M.A., Chen H., et al. Structures and functions of cuticular wax in postharvest fruit and its regulation: A comprehensive review with future perspectives. Engineering. 2023;23:118–129. doi: 10.1016/j.eng.2022.12.006. DOI
Leide J., Xavier de Souza A., Papp I., Riederer M. Specific characteristics of the apple fruit cuticle: Investigation of early and late season cultivars ‘Prima’ and ‘Florina’ (Malus domestica Borkh.) Sci. Hortic. 2018;229:137–147. doi: 10.1016/j.scienta.2017.10.042. DOI
Shepherd T., Wynne Griffiths D. The effects of stress on plant cuticular waxes. New Phytol. 2006;171:469–499. doi: 10.1111/j.1469-8137.2006.01826.x. PubMed DOI
Fernandez-Moreno J.-P., Malitsky S., Lashbrooke J., Biswal A.K., Racovita R.C., Mellerowicz E.J., Jetter R., Orzaez D., Aharoni A., Granell A. An efficient method for medium throughput screening of cuticular wax composition in different plant species. Metabolomics. 2016;12:73. doi: 10.1007/s11306-016-0982-0. DOI
Lara I., Belge B., Goulao L.F. A Focus on the Biosynthesis and Composition of Cuticle in Fruits. J. Agric. Food Chem. 2015;63:4005–4019. doi: 10.1021/acs.jafc.5b00013. PubMed DOI
Li F., Min D., Song B., Shao S., Zhang X. Ethylene effects on apple fruit cuticular wax composition and content during cold storage. Postharv. Biol. Technol. 2017;134:98–105. doi: 10.1016/j.postharvbio.2017.08.011. DOI
Li F., Min D., Ren C., Dong L., Shu P., Cui X., Zhang X. Ethylene altered fruit cuticular wax, the expression of cuticular wax synthesis-related genes and fruit quality during cold storage of apple (Malus domestica Borkh. C.v. Starkrimson) fruit. Postharv. Biol. Technol. 2019;149:58–65. doi: 10.1016/j.postharvbio.2018.11.016. DOI
Chen J., Green K.B., Nichols K.K. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions. Lipids. 2015;50:821–836. doi: 10.1007/s11745-015-4044-6. PubMed DOI PMC
Tada A., Jin Z.-L., Sugimoto N., Sato K., Yamazaki T., Tanamoto K. Analysis of the constituents in jojoba wax used as a food additive by LC/MS/MS. Shokuhin Eiseigaku Zasshi. J. Food Hyg. Soc. Jpn. 2005;46:198–204. doi: 10.3358/shokueishi.46.198. PubMed DOI
McGhie T.K., Hudault S., Lunken R.C.M., Christeller J.T. Apple peels, from seven cultivars, have lipase-inhibitory activity and contain numerous ursenoic acids as identified by LC-ESI-QTOF-HRMS. J. Agric. Food Chem. 2012;60:482–491. doi: 10.1021/jf203970j. PubMed DOI
Poirier B.C., Buchanan D.A., Rudell D.R., Mattheis J.P. Differential Partitioning of Triterpenes and Triterpene Esters in Apple Peel. J. Agric. Food Chem. 2018;66:1800–1806. doi: 10.1021/acs.jafc.7b04509. PubMed DOI
Andre C.M., Greenwood J.M., Walker E.G., Rassam M., Sullivan M., Evers D., Perry N.B., Laing W.A. Anti-inflammatory procyanidins and triterpenes in 109 apple varieties. J. Agric. Food Chem. 2012;60:10546–10554. doi: 10.1021/jf302809k. PubMed DOI
Andre C.M., Larsen L., Burgess E.J., Jensen D.J., Cooney J.M., Evers D., Zhang J., Perry N.B., Laing W.A. Unusual immuno-modulatory triterpene-caffeates in the skins of russeted varieties of apples and pears. J. Agric. Food Chem. 2013;61:2773–2779. doi: 10.1021/jf305190e. PubMed DOI
Tsugawa H., Kind T., Nakabayashi R., Yukihira D., Tanaka W., Cajka T., Saito K., Fiehn O., Arita M. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal. Chem. 2016;88:7946–7958. doi: 10.1021/acs.analchem.6b00770. PubMed DOI PMC
Dührkop K., Fleischauer M., Ludwig M., Aksenov A.A., Melnik A.V., Meusel M., Dorrestein P.C., Rousu J., Böcker S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods. 2019;16:4. doi: 10.1038/s41592-019-0344-8. PubMed DOI
Dührkop K., Nothias L.-F., Fleischauer M., Reher R., Ludwig M., Hoffmann M.A., Petras D., Gerwick W.H., Rousu J., Dorrestein P.C., et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 2021;39:4. doi: 10.1038/s41587-020-0740-8. PubMed DOI
Dührkop K., Shen H., Meusel M., Rousu J., Böcker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA. 2015;112:12580–12585. doi: 10.1073/pnas.1509788112. PubMed DOI PMC
Kim H.W., Wang M., Leber C.A., Nothias L.-F., Reher R., Kang K.B., van der Hooft J.J.J., Dorrestein P.C., Gerwick W.H., Cottrell G.W. NPClassifier: A Deep Neural Network-Based Structural Classification Tool for Natural Products. J. Nat. Prod. 2021;84:2795–2807. doi: 10.1021/acs.jnatprod.1c00399. PubMed DOI PMC
Djoumbou Feunang Y., Eisner R., Knox C., Chepelev L., Hastings J., Owen G., Fahy E., Steinbeck C., Subramanian S., Bolton E., et al. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 2016;8:61. doi: 10.1186/s13321-016-0174-y. PubMed DOI PMC
Karp P.D., Billington R., Caspi R., Fulcher C.A., Latendresse M., Kothari A., Keseler I.M., Krummenacker M., Midford P.E., Ong Q., et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief. Bioinform. 2019;20:1085–1093. doi: 10.1093/bib/bbx085. PubMed DOI PMC
Sorokina M., Merseburger P., Rajan K., Yirik M.A., Steinbeck C. COCONUT online: Collection of open natural products database. J. Cheminform. 2021;13:2. doi: 10.1186/s13321-020-00478-9. PubMed DOI PMC
Wishart D.S., Guo A.C., Oler E., Wang F., Anjum A., Peters H., Dizon R., Sayeeda Z., Tian S., Lee B.L., et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022;50:D622–D631. doi: 10.1093/nar/gkab1062. PubMed DOI PMC
Reisdorph N.A., Walmsley S., Reisdorph R. A Perspective and Framework for Developing Sample Type Specific Databases for LC/MS-Based Clinical Metabolomics. Metabolites. 2019;10:8. doi: 10.3390/metabo10010008. PubMed DOI PMC
Blaženović I., Kind T., Ji J., Fiehn O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites. 2018;8:31. doi: 10.3390/metabo8020031. PubMed DOI PMC
Sumner L.W., Amberg A., Barrett D., Beale M.H., Beger R., Daykin C.A., Fan T.W.-M., Fiehn O., Goodacre R., Griffin J.L., et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI) Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC
Bylesjö M., Rantalainen M., Cloarec O., Nicholson J.K., Holmes E., Trygg J. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 2006;20:341–351. doi: 10.1002/cem.1006. DOI
Triba M.N., Le Moyec L., Amathieu R., Goossens C., Bouchemal N., Nahon P., Rutledge D.N., Savarin P. PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol. BioSyst. 2015;11:13–19. doi: 10.1039/c4mb00414k. PubMed DOI
Cocchi M., Biancolillo A., Marini F. Chapter Ten—Chemometric Methods for Classification and Feature Selection. In: Jaumot J., Bedia C., Tauler R., editors. Comprehensive Analytical Chemistry. Volume 82. Elsevier; Amsterdam, The Netherlands: 2018. pp. 265–299. Data Analysis for Omic Sciences: Methods and Applications. DOI
Pennington J.A.T. Food Composition Databases for Bioactive Food Components. J. Food Comp. Anal. 2002;15:419–434. doi: 10.1006/jfca.2002.1073. DOI
Ramírez-Ambrosi M., López-Márquez D.M., Abad-García B., Dapena E., Berrueta L.Á., Gallo B. Comparative study of phenolic profile of fruit and juice samples of a progeny of ‘Meana’ × ‘Florina’ from an Asturian cider apple breeding program. Eur. Food Res. Technol. 2015;241:769–784. doi: 10.1007/s00217-015-2502-2. DOI
Sud M., Fahy E., Cotter D., Brown A., Dennis E.A., Glass C.K., Merrill Jr A.H., Murphy R.C., Raetz C.R.H., Russell D.W., et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007;35:D527–D532. doi: 10.1093/nar/gkl838. PubMed DOI PMC
Veraverbeke E.A., Lammertyn J., Saevels S., Nicolaï B.M. Changes in chemical wax composition of three different apple (Malus domestica Borkh.) cultivars during storage. Postharv. Biol. Technol. 2001;23:197–208. doi: 10.1016/S0925-5214(01)00128-4. DOI
Klein B., Falk R.B., Thewes F.R., Anese R.d.O., dos Santos I.D., Ribeiro S.R., Donadel J.Z., Brackmann A., Barin J.S., Cichoski A.J., et al. Dynamic controlled atmosphere: Effects on the chemical composition of cuticular wax of ‘Cripps Pink’ apples after long-term storage. Postharv. Biol. Technol. 2020;164:111170. doi: 10.1016/j.postharvbio.2020.111170. DOI
Morice I.M., Shorland F.B. Composition of the surface waxes of apple fruits and changes during storage. J. Sci. Food Agric. 1973;24:1331–1339. doi: 10.1002/jsfa.2740241104. PubMed DOI
Urbanova K., Vrkoslav V., Valterova I., Haková M., Cvacka J. Structural characterization of wax esters by electron ionization mass spectrometry. J. Lipid Res. 2011;53:204–213. doi: 10.1194/jlr.d020834. PubMed DOI PMC
Vrkoslav V., Urbanová K., Cvacka J. Analysis of wax ester molecular species by high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A. 2010;1217:4184–4194. doi: 10.1016/j.chroma.2009.12.048. PubMed DOI
Vrkoslav V., Urbanova K., Haková M., Cvacka J. Analysis of wax esters by silver-ion high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2013;1302:105–110. doi: 10.1016/j.chroma.2013.06.031. PubMed DOI
Sekosan G. LC-MS Identification of Wax Esters in Cloudy Canola Oil. LCGC Suppl. 2014;12:16–21.
Iven T., Herrfurth C., Hornung E., Heilmann M., Hofvander P., Stymne S., Feussner I. Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry. Plant Methods. 2013;9:24. doi: 10.1186/1746-4811-9-24. PubMed DOI PMC
Liebisch G., Fahy E., Aoki J., Dennis E.A., Durand T., Ejsing C.S., Fedorova M., Feussner I., Griffiths W.J., Köfeler H., et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020;61:1539–1555. doi: 10.1194/jlr.s120001025. PubMed DOI PMC
Liberati-Čizmek A.-M., Biluš M., Brkić A.L., Barić I.C., Bakula M., Hozić A., Cindrić M. Analysis of Fatty Acid Esters of Hydroxyl Fatty Acid in Selected Plant Food. Plant Foods Hum. Nutr. 2019;74:235–240. doi: 10.1007/s11130-019-00728-8. PubMed DOI
Mandrekar J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010;5:1315–1316. doi: 10.1097/jto.0b013e3181ec173d. PubMed DOI
Westerhuis J.A., Hoefsloot H.C.J., Smit S., Vis D.J., Smilde A.K., van Velzen E.J.J., van Duijnhoven J.P.M., van Dorsten F.A. Assessment of PLSDA cross validation. Metabolomics. 2008;4:81–89. doi: 10.1007/s11306-007-0099-6. DOI
Spickett C.M., Pitt A.R. Oxidative Lipidomics Coming of Age: Advances in Analysis of Oxidized Phospholipids in Physiology and Pathology. Antioxid. Redox Signal. 2015;22:1646–1666. doi: 10.1089/ars.2014.6098. PubMed DOI PMC
Tessmer M.A., Antoniolli L.R., Appezzato-da-Glória B. Cuticle of “Gala” and “Galaxy” apples cultivars under different environmental conditions. Braz. Arch. Biol. Technol. 2012;55:709–714. doi: 10.1590/S1516-89132012000500010. DOI
Lommen A., Godejohann M., Venema D.P., Hollman P.C., Spraul M. Application of directly coupled HPLC-NMR-MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel. Anal. Chem. 2000;72:1793–1797. doi: 10.1021/ac9912303. PubMed DOI
Awad M.A., de Jager A., van Westing L.M. Flavonoid and chlorogenic acid levels in apple fruit: Characterisation of variation. Sci. Hort. 2000;83:249–263. doi: 10.1016/S0304-4238(99)00124-7. DOI