Preferential survival of prebiotic metallopeptides in the presence of ultraviolet light
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40438176
PubMed Central
PMC12108965
DOI
10.1039/d5sc02170g
PII: d5sc02170g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The transition from unregulated, prebiotic chemistry to metabolic-like systems capable of supporting an evolving protocell has remained difficult to explain. One hypothesis is that early catalysts began to prune the chemical landscape in a manner that facilitated the emergence of modern-day enzymes. As enzymes frequently rely on the intrinsic reactivity of metal ions, it follows that these early catalysts may have been metal ions coordinated to prebiotic peptides that have remained as core structures within extant proteins. Here, we demonstrate that UV light directly selects for the types of metal-binding peptide motifs found in biology. This is because bare cysteine is much more susceptible to photolysis than cysteine bound by a metal ion. Therefore, peptides with greater affinity for environmentally available metal ions, such as Fe2+ or Zn2+, are more stable. Our results are supported by mass spectrometry, calorimetry, X-ray absorption, NMR spectroscopy, transient absorption pump probe spectroscopy, and excited-state quantum-chemical calculations. Photostability arises from the ability of the metal ion to engage transiently generated reactive radical centers in a manner that prevents subsequent degradative processes. The data are consistent with the enrichment of a restricted set of high affinity, extant-like metallopeptides in surficial environments on the early Earth.
ALBA Synchrotron Carrer Llum 2 26 Cerdanyola del Valles Barcelona 08290 Spain
Department of Astronomy Harvard University 60 Garden Street Cambridge Massachusetts 02138 USA
Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
Department of Physics University of Trento 38123 Povo Italy
Zobrazit více v PubMed
Copley S. D. Smith E. Morowitz H. J. Bioorg. Chem. 2007;35:430–443. doi: 10.1016/j.bioorg.2007.08.001. PubMed DOI
Muchowska K. B. Varma S. J. Moran J. Nature. 2019;569:104–107. doi: 10.1038/s41586-019-1151-1. PubMed DOI PMC
Keller M. A. Turchyn A. V. Ralser M. Mol. Syst. Biol. 2014;10:725. doi: 10.1002/msb.20145228. PubMed DOI PMC
Bonfio C. Godino E. Corsini M. Fabrizi de Biani F. Guella G. Mansy S. S. Nat. Catal. 2018;1:616–623. doi: 10.1038/s41929-018-0116-3. DOI
Walton C. R. Rimmer P. Shorttle O. Front. Earth Sci. 2022;10:1011717. doi: 10.3389/feart.2022.1011717. DOI
Patel B. H. Percivalle C. Ritson D. J. Duffy C. D. Sutherland J. D. Nat. Chem. 2015;7:301–307. doi: 10.1038/nchem.2202. PubMed DOI PMC
Kim H.-J. Benner S. A. Proc. Natl. Acad. Sci. U. S. A. 2017;114:11315–11320. doi: 10.1073/pnas.1710778114. PubMed DOI PMC
Cohen Z. R. Kessenich B. L. Hazra A. Nguyen J. Johnson R. S. MacCoss M. J. Lalic G. Black R. A. Keller S. L. ChemBioChem. 2022;23:e202100614. doi: 10.1002/cbic.202100614. PubMed DOI PMC
Toner J. D. Catling D. C. Proc. Natl. Acad. Sci. U. S. A. 2020;117:883–888. doi: 10.1073/pnas.1916109117. PubMed DOI PMC
Tutolo B. M. Perrin R. Lauer R. Bossaer S. Tosca N. J. Hutchings A. Sevgen S. Nightingale M. Ilg D. Mott E. B. Wilson T. Life. 2024;14:1624. doi: 10.3390/life14121624. PubMed DOI PMC
Deamer D. Weber A. L. Cold Spring Harb. Perspect. Biol. 2010;2:a004929. PubMed PMC
Becker S. Feldmann J. Wiedemann S. Okamura H. Schneider C. Iwan K. Crisp A. Rossa M. Amatov T. Carell T. Science. 2019;366:76–82. doi: 10.1126/science.aax2747. PubMed DOI
Green N. J. Xu J. Sutherland J. D. J. Am. Chem. Soc. 2021;143:7219–7236. doi: 10.1021/jacs.1c01839. PubMed DOI PMC
Szabla R., in Prebiotic Photochemistry: From Urey–Miller-like Experiments to Recent Findings, ed. F. Saija and G. Cassone, The Royal Society of Chemistry, 2021, pp. 79–106
Rapf R. J. Vaida V. Phys. Chem. Chem. Phys. 2016;18:20067–20084. doi: 10.1039/C6CP00980H. PubMed DOI
Xu J. Chmela V. Green N. J. Russell D. A. Janicki M. J. Góra R. W. Szabla R. Bond A. D. Sutherland J. D. Nature. 2020;582:60–66. doi: 10.1038/s41586-020-2330-9. PubMed DOI PMC
Xu J. Tsanakopoulou M. Magnani C. J. Szabla R. Šponer J. E. Šponer J. Góra R. W. Sutherland J. D. Nat. Chem. 2017;9:303–309. doi: 10.1038/nchem.2664. PubMed DOI PMC
Janicki M. J. Roberts S. J. Šponer J. Powner M. W. Góra R. W. Szabla R. Chem. Commun. 2018;54:13407–13410. doi: 10.1039/C8CC07343K. PubMed DOI
Todd Z. R. Szabla R. Szostak J. W. Sasselov D. D. Chem. Commun. 2019;55:10388–10391. doi: 10.1039/C9CC05265H. PubMed DOI PMC
Bertram L. Roberts S. J. Powner M. W. Szabla R. Phys. Chem. Chem. Phys. 2022;24:21406–21416. doi: 10.1039/D2CP03167A. PubMed DOI PMC
Serrano-Andrés L. Merchán M. J. Photochem. Photobiol., C. 2009;10:21–32. doi: 10.1016/j.jphotochemrev.2008.12.001. DOI
Beckstead A. A. Zhang Y. de Vries M. S. Kohler B. Phys. Chem. Chem. Phys. 2016;18:24228–24238. doi: 10.1039/C6CP04230A. PubMed DOI
Ranjan S. Sasselov D. D. Astrobiology. 2017;17:169–204. doi: 10.1089/ast.2016.1519. PubMed DOI
Ranjan S. Kufner C. L. Lozano G. G. Todd Z. R. Haseki A. Sasselov D. D. Astrobiology. 2022;22:242–262. PubMed PMC
Todd Z. R. Lozano G. G. Kufner C. L. Ranjan S. Catling D. C. Sasselov D. D. Astrobiology. 2024;24:559–569. doi: 10.1089/ast.2023.0077. PubMed DOI
Rimmer P. B. Thompson S. J. Xu J. Russell D. A. Green N. J. Ritson D. J. Sutherland J. D. Queloz D. P. Astrobiology. 2021;21:1099–1120. doi: 10.1089/ast.2020.2335. PubMed DOI PMC
Madsen M. M. Jensen F. Thøgersen J. Phys. Chem. Chem. Phys. 2020;22:2307–2318. doi: 10.1039/C9CP05836B. PubMed DOI
Thøgersen J. Chatterley A. S. Weidner T. Jensen F. J. Am. Chem. Soc. 2023;145:9777–9785. doi: 10.1021/jacs.3c01469. PubMed DOI
Foden C. S. Islam S. Fernández-García C. Maugeri L. Sheppard T. D. Powner M. W. Science. 2020;370:865–869. doi: 10.1126/science.abd5680. PubMed DOI
Wehbi S. Wheeler A. Morel B. Manepalli N. Minh B. Q. Lauretta D. S. Masel J. Proc. Natl. Acad. Sci. U. S. A. 2024;121:e2410311121. doi: 10.1073/pnas.2410311121. PubMed DOI PMC
Belmonte L. Mansy S. S. J. Chem. Inf. Model. 2017;57:3162–3171. doi: 10.1021/acs.jcim.7b00468. PubMed DOI
Rossetto D. Valer L. Yeh Martín N. Guella G. Hongo Y. Mansy S. S. ACS Earth Space Chem. 2022;6(5):1221–1226. doi: 10.1021/acsearthspacechem.2c00042. PubMed DOI PMC
Bonfio C. Valer L. Scintilla S. Shah S. Evans D. J. Jin L. Szostak J. W. Sasselov D. D. Sutherland J. D. Mansy S. S. Nat. Chem. 2017;9:1229–1234. doi: 10.1038/nchem.2817. PubMed DOI PMC
Scintilla S. Rossetto D. Clémancey M. Rendon J. Ranieri A. Guella G. Assfalg M. Borsari M. Gambarelli S. Blondin G. Mansy S. S. Chem. Sci. 2025;16:4614–4624. doi: 10.1039/D5SC00524H. PubMed DOI PMC
Aithal A. Dagar S. Rajamani S. ACS Omega. 2023;8:5197–5208. doi: 10.1021/acsomega.2c07635. PubMed DOI PMC
Ranjan S. Wordsworth R. Sasselov D. D. Astrophys. J. 2017;843:110. doi: 10.3847/1538-4357/aa773e. DOI
Hazen R. M. Am. J. Sci. 2013;313:807–843. doi: 10.2475/09.2013.01. DOI
Belmonte L. Rossetto D. Forlin M. Scintilla S. Bonfio C. Mansy S. S. Phys. Chem. Chem. Phys. 2016;18:20104–20108. doi: 10.1039/C6CP00608F. PubMed DOI
Valer L. Rossetto D. Parkkila T. Sebastianelli L. Guella G. Hendricks A. L. Cowan J. A. Sang L. Mansy S. S. ChemBioChem. 2022;23:e202200202. doi: 10.1002/cbic.202200202. PubMed DOI PMC
Kochańczyk T. Jakimowicz P. Krężel A. Chem. Comm. 2013;49:1312–1314. doi: 10.1039/C2CC38174E. PubMed DOI
Software for Science Developments (S4SD), 2023, http://www.affinimeter.com
Clark-Baldwin K. Tierney D. L. Govindaswamy N. Gruff E. S. Kim C. Berg J. Koch S. A. Penner-Hahn J. E. J. Am. Chem. Soc. 1998;120:8401–8409. doi: 10.1021/ja980580o. DOI
Kelly R. A. Andrews J. C. DeWitt J. G. Microchem. J. 2002;71:231–245. doi: 10.1016/S0026-265X(02)00015-2. DOI
Dreuw A. Wormit M. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2015;5:82–95.
Karbalaei Khani S. Marefat Khah A. Hättig C. Phys. Chem. Chem. Phys. 2018;20:16354–16363. doi: 10.1039/C8CP00643A. PubMed DOI
Hättig C., in Adv. Quantum Chem., ed. H. J. Å. Jensen, Academic Press, 2005, vol. 50, pp. 37–60
Laitaoja M. Valjakka J. Jänis J. Inorg. Chem. 2013;52:10983–10991. doi: 10.1021/ic401072d. PubMed DOI
Sarkar S. Dagar S. Rajamani S. ChemSystemsChem. 2021;3:e2100014. doi: 10.1002/syst.202100014. DOI
Rajamani S. Vlassov A. Benner S. Coombs A. Olasagasti F. Deamer D. Origins Life Evol. B. 2008;38:57–74. doi: 10.1007/s11084-007-9113-2. PubMed DOI
Rossetto D. Sebastianelli L. Oberegger S. Todorovic S. Haas H. Mansy S. S. Adv. Biol. 2024;8:e2300545. doi: 10.1002/adbi.202300545. PubMed DOI
Rossetto D. Cvjetan N. Walde P. Mansy S. S. Acc. Chem. Res. 2024;57:2293–2302. doi: 10.1021/acs.accounts.4c00254. PubMed DOI PMC
Merritt H. I. Sawyer N. Arora P. S. Pept. Sci. 2020;112:e24145. doi: 10.1002/pep2.24145. PubMed DOI PMC
Fu M. Blackshear P. J. Genome Res. 2017;17:130–143. PubMed PMC
Friesen W. J. Darby M. K. J. Biol. Chem. 2001;276:1968–1973. doi: 10.1074/jbc.M008927200. PubMed DOI
Zerkle A. L. House C. H. Brantley S. L. Am. J. Sci. 2005;305:467–502. doi: 10.2475/ajs.305.6-8.467. DOI
Isalan M., in Encyclopedia of Biological Chemistry, ed. W. J. Lennarz and M. D. Lane, Academic Press, Waltham, 2nd edn, 2013, pp. 575–579
Rodríguez J. Mosquera J. Vázquez O. Vázquez M. E. Mascareñas J. L. Chem. Commun. 2014;50:2258–2260. doi: 10.1039/C3CC47599A. PubMed DOI
Alva V. Lupas A. N. Curr. Opin. Struct. Biol. 2018;48:103–109. doi: 10.1016/j.sbi.2017.11.006. PubMed DOI
Pace N. J. Weerapana E. Biomolecules. 2014;4:419–434. doi: 10.3390/biom4020419. PubMed DOI PMC
Lauber N. Flamm C. Ruiz-Mirazo K. BioEssays. 2021;43:1–12. doi: 10.1002/bies.202100103. PubMed DOI