c-Jun N-terminal kinase signaling in aging
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
39267721
PubMed Central
PMC11390425
DOI
10.3389/fnagi.2024.1453710
Knihovny.cz E-resources
- Keywords
- JNK, aging, longevity, molecular insights, therapeutic targets,
- Publication type
- Journal Article MeSH
- Review MeSH
Aging encompasses a wide array of detrimental effects that compromise physiological functions, elevate the risk of chronic diseases, and impair cognitive abilities. However, the precise underlying mechanisms, particularly the involvement of specific molecular regulatory proteins in the aging process, remain insufficiently understood. Emerging evidence indicates that c-Jun N-terminal kinase (JNK) serves as a potential regulator within the intricate molecular clock governing aging-related processes. JNK demonstrates the ability to diminish telomerase reverse transcriptase activity, elevate β-galactosidase activity, and induce telomere shortening, thereby contributing to immune system aging. Moreover, the circadian rhythm protein is implicated in JNK-mediated aging. Through this comprehensive review, we meticulously elucidate the intricate regulatory mechanisms orchestrated by JNK signaling in aging processes, offering unprecedented molecular insights with significant implications and highlighting potential therapeutic targets. We also explore the translational impact of targeting JNK signaling for interventions aimed at extending healthspan and promoting longevity.
College of Life Science Yangtze University Jingzhou China
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czechia
Department of Chemistry Faculty of Science University of Hradec Králové Hradec Králové Czechia
Faculty of Chemical and Food Technology Slovak University of Technology Bratislava Slovakia
See more in PubMed
Abdelgawad I. Y., Agostinucci K., Sadaf B., Grant M. K. O., Zordoky B. N. (2023). Metformin mitigates SASP secretion and LPS-triggered hyper-inflammation in doxorubicin-induced senescent endothelial cells. Front. Aging 4:1170434. doi: 10.3389/fragi.2023.1170434, PMID: PubMed DOI PMC
Abdellatif M., Rainer P. P., Sedej S., Kroemer G. (2023). Hallmarks of cardiovascular ageing. Nat. Rev. Cardiol. 20, 754–777. doi: 10.1038/s41569-023-00881-3 PubMed DOI
Abdul-Aziz A. M., Sun Y., Hellmich C., Marlein C. R., Mistry J., Forde E., et al. . (2019). Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment. Blood 133, 446–456. doi: 10.1182/blood-2018-04-845420, PMID: PubMed DOI PMC
Acosta-Rodriguez V. A., Rijo-Ferreira F., Green C. B., Takahashi J. S. (2021). Importance of circadian timing for aging and longevity. Nat. Commun. 12:2862. doi: 10.1038/s41467-021-22922-6 PubMed DOI PMC
Admasu T. D., Kim K., Rae M., Avelar R., Gonciarz R. L., Rebbaa A., et al. . (2023). Selective ablation of primary and paracrine senescent cells by targeting iron dyshomeostasis. Cell Rep. 42:112058. doi: 10.1016/j.celrep.2023.112058, PMID: PubMed DOI
Agarwal P., Agarwal R. (2018). Trabecular meshwork ECM remodeling in glaucoma: could RAS be a target? Expert Opin. Ther. Targets 22, 629–638. doi: 10.1080/14728222.2018.1486822, PMID: PubMed DOI
Al Mamun A., Wu Y., Jia C., Munir F., Sathy K. J., Sarker T., et al. . (2020). Role of pyroptosis in liver diseases. Int. Immunopharmacol. 84:106489. doi: 10.1016/j.intimp.2020.106489 PubMed DOI
Allwood M. A., Kinobe R. T., Ballantyne L., Romanova N., Melo L. G., Ward C. A., et al. . (2014). Heme oxygenase-1 overexpression exacerbates heart failure with aging and pressure overload but is protective against isoproterenol-induced cardiomyopathy in mice. Cardiovasc. Pathol. 23, 231–237. doi: 10.1016/j.carpath.2014.03.007, PMID: PubMed DOI
Amini M. A., Karimi J., Talebi S. S., Piri H. (2022). The association of COVID-19 and reactive oxygen species modulator 1 (ROMO1) with oxidative stress. Chonnam Med. J. 58, 1–5. doi: 10.4068/cmj.2022.58.1.1, PMID: PubMed DOI PMC
Bengoa-Vergniory N., Gorrono-Etxebarria I., Gonzalez-Salazar I., Kypta R. M. (2014). A switch from canonical to noncanonical Wnt signaling mediates early differentiation of human neural stem cells. Stem Cells 32, 3196–3208. doi: 10.1002/stem.1807 PubMed DOI
Bennett B. L., Sasaki D. T., Murray B. W., O'Leary E. C., Sakata S. T., Xu W., et al. . (2001). SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686. doi: 10.1073/pnas.251194298, PMID: PubMed DOI PMC
Beyne-Rauzy O., Prade-Houdellier N., Demur C., Recher C., Ayel J., Laurent G., et al. . (2005). Tumor necrosis factor-alpha inhibits hTERT gene expression in human myeloid normal and leukemic cells. Blood 106, 3200–3205. doi: 10.1182/blood-2005-04-1386, PMID: PubMed DOI
Bi J., Yang L., Wang T., Zhang J., Li T., Ren Y., et al. . (2020). Irisin improves autophagy of aged hepatocytes via increasing telomerase activity in liver injury. Oxidative Med. Cell. Longev. 2020, 1–13. doi: 10.1155/2020/6946037 PubMed DOI PMC
Bodogai M., O'Connell J., Kim K., Kim Y., Moritoh K., Chen C., et al. . (2018). Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci. Transl. Med. 10:eaat4271. doi: 10.1126/scitranslmed.aat4271, PMID: PubMed DOI PMC
Boehme M., Guzzetta K. E., Bastiaanssen T. F. S., van de Wouw M., Moloney G. M., Gual-Grau A., et al. . (2021). Microbiota from young mice counteracts selective age-associated behavioral deficits. Nature Aging 1, 666–676. doi: 10.1038/s43587-021-00093-9, PMID: PubMed DOI
Boerner J. H., Rawashdeh O., Rami A. (2021). Exacerbated age-related hippocampal alterations of microglia morphology, beta-amyloid and lipofuscin deposition and Presenilin overexpression in Per1(−/−)-mice. Antioxidants 10:1330. doi: 10.3390/antiox10091330, PMID: PubMed DOI PMC
Borsello T., Clarke P. G. H., Hirt L., Vercelli A., Repici M., Schorderet D. F., et al. . (2003). A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat. Med. 9, 1180–1186. doi: 10.1038/nm911, PMID: PubMed DOI
Bosco N., Noti M. (2021). The aging gut microbiome and its impact on host immunity. Genes Immun. 22, 289–303. doi: 10.1038/s41435-021-00126-8, PMID: PubMed DOI PMC
Braithwaite S. P., Schmid R. S., He D. N., Sung M.-L. A., Cho S., Resnick L., et al. . (2010). Inhibition of c-Jun kinase provides neuroprotection in a model of Alzheimer's disease. Neurobiol. Dis. 39, 311–317. doi: 10.1016/j.nbd.2010.04.015, PMID: PubMed DOI PMC
Cai Y., Jiang W., Zhou A.-L., Zhou M., Xu L. (2017). Effect of oxymatrine on apoptosis of hippocampal neurons by p38/JNK signaling pathway. Chin. J. Chinese Mat. Med. 42, 731–738. doi: 10.19540/j.cnki.cjcmm.2017.0020, PMID: PubMed DOI
Cao N., Liu X., Hou Y., Deng Y., Xin Y., Xin X., et al. . (2023). 18-α-glycyrrhetinic acid alleviates oxidative damage in periodontal tissue by modulating the interaction of Cx43 and JNK/NF-κB pathways. Front. Pharmacol. 14:1221053. doi: 10.3389/fphar.2023.1221053, PMID: PubMed DOI PMC
Cha H. J., Kim Y. J. (2015). Procyanidin B1 Regualtes matrix-metalloprotease 1 mRNA expression using JNK-AP1-TRE Axis in Normal human dermal fibroblasts. Asian J. Beauty Cosmetol. 13, 761–765.
Cha S., Wang J., Lee S. M., Tan Z., Zhao Q., Bai D. (2022). Clock-modified mesenchymal stromal cells therapy rescues molecular circadian oscillation and age-related bone loss via miR142-3p/Bmal1/YAP signaling axis. Cell Death Discov. 8:111. doi: 10.1038/s41420-022-00908-7, PMID: PubMed DOI PMC
Chakraborty A., Edkins A. L. (2021). HSP90 as a regulator of extracellular matrix dynamics. Biochem. Soc. Trans. 49, 2611–2625. doi: 10.1042/BST20210374, PMID: PubMed DOI
Chang T.-H., Huang J.-H., Lin H.-C., Chen W.-Y., Lee Y.-H., Hsu L.-C., et al. . (2017). Dectin-2 is a primary receptor for NLRP3 inflammasome activation in dendritic cell response to Histoplasma capsulatum. PLoS Pathog. 13:e1006485. doi: 10.1371/journal.ppat.1006485, PMID: PubMed DOI PMC
Chang Y. C., Tu H., Chen J.-Y., Chang C.-C., Yang S. Y., Pi H. (2019). Reproduction disrupts stem cell homeostasis in testes of aged male Drosophila via an induced microenvironment. PLoS Genet. 15:e1008062. doi: 10.1371/journal.pgen.1008062, PMID: PubMed DOI PMC
Changchihen C.-Y., Sung M.-H., Chang H.-H., Tsai W.-C., Peng Y.-S., Chen Y. (2020). Uremic toxin indoxyl sulfate suppresses myocardial Cx43 assembly and expression via JNK activation. Chem. Biol. Interact. 319:108979. doi: 10.1016/j.cbi.2020.108979, PMID: PubMed DOI
Chen J., Gazit V. A., Levin M. S., Davidson N. O., Rubin D. C. (2021). DEOXYCHOLIC acid induces an epithelial cell proliferative response in human stem cell derived ENTEROIDS. Gastroenterology 160, S-618–S-619. doi: 10.1016/S0016-5085(21)02180-6 DOI
Chen T., Kablaoui N., Little J., Timofeevski S., Tschantz W. R., Chen P., et al. . (2009). Identification of small-molecule inhibitors of the JIP-JNK interaction. Biochem. J. 420, 283–296. doi: 10.1042/BJ20081899, PMID: PubMed DOI
Chen R., Owuor T. O., Patel R. M., Casey E., Magee J. A. (2019). Kmt2c limits the self-renewal capacity of multiply divided HSCs by promoting sensitivity to Interleukin-1. Blood 134:3711. doi: 10.1182/blood-2019-126229 DOI
Chen J., Wang M., Zhang P., Li H., Qu K., Xu R., et al. . (2022). Cordycepin alleviated metabolic inflammation in Western diet-fed mice by targeting intestinal barrier integrity and intestinal flora. Pharmacol. Res. 178:106191. doi: 10.1016/j.phrs.2022.106191, PMID: PubMed DOI
Chen X., Xu H., Ding L., Lou G., Liu Y., Yao Y., et al. . (2015). Identification of miR-26a as a target gene of bile acid receptor GPBAR-1/TGR5. PLoS One 10:e0131294. doi: 10.1371/journal.pone.0131294, PMID: PubMed DOI PMC
Chhabra G., Wojdyla L., Frakes M., Schrank Z., Leviskas B., Ivancich M., et al. . (2018). Mechanism of action of G-Quadruplex-forming oligonucleotide homologous to the telomere overhang in melanoma. J. Invest. Dermatol. 138, 903–910. doi: 10.1016/j.jid.2017.11.021, PMID: PubMed DOI
Chhunchha B., Kubo E., Singh D. P. (2020). Clock protein Bmal1 and Nrf2 cooperatively control aging or oxidative response and redox homeostasis by regulating rhythmic expression of Prdx6. Cells 9:1861. doi: 10.3390/cells9081861, PMID: PubMed DOI PMC
Choi W., Kim H. S., Park S. H., Kim D., Hong Y. D., Kim J. H., et al. . (2022). Syringaresinol derived from Panax ginseng berry attenuates oxidative stress-induced skin aging via autophagy. J. Ginseng Res. 46, 536–542. doi: 10.1016/j.jgr.2021.08.003, PMID: PubMed DOI PMC
Chung K. W., Ha S., Kim S. M., Kim D. H., An H. J., Lee E. K., et al. . (2020). PPAR alpha/beta activation alleviates age-associated renal fibrosis in Sprague Dawley rats. J. Gerontol. A Biol. Sci. Med. Sci. 75, 452–458. doi: 10.1093/gerona/glz083 PubMed DOI
Conway J., Duggal N. A. (2021). Ageing of the gut microbiome: potential influences on immune senescence and inflammageing. Ageing Res. Rev. 68:101323. doi: 10.1016/j.arr.2021.101323 PubMed DOI
Crespo M., Gonzalez-Teran B., Nikolic I., Mora A., Folgueira C., Rodriguez E., et al. . (2020). Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. eLife 9:e59258. doi: 10.7554/eLife.59258 PubMed DOI PMC
Dalla Via A., Gargari G., Taverniti V., Rondini G., Velardi I., Gambaro V., et al. . (2020). Urinary TMAO levels are associated with the taxonomic composition of the gut microbiota and with the choline TMA-Lyase gene (cutC) harbored by Enterobacteriaceae. Nutrients 12:62. doi: 10.3390/nu12010062 PubMed DOI PMC
Dasanayaka N. N., Sirisena N. D., Samaranayake N. (2023). Associations of meditation with telomere dynamics: a case-control study in healthy adults. Front. Psychol. 14:1222863. doi: 10.3389/fpsyg.2023.1222863, PMID: PubMed DOI PMC
Dave J. R., Chandekar S. S., Behera S., Desai K. U., Salve P. M., Sapkal N. B., et al. . (2022). Human gingival mesenchymal stem cells retain their growth and immunomodulatory characteristics independent of donor age. Sci. Adv. 8:eabm6504. doi: 10.1126/sciadv.abm6504 PubMed DOI PMC
De S. K., Barile E., Chen V., Stebbins J. L., Cellitti J. F., Machleidt T., et al. . (2011). Design, synthesis, and structure-activity relationship studies of thiophene-3-carboxamide derivatives as dual inhibitors of the c-Jun N-terminal kinase. Bioorg. Med. Chem. 19, 2582–2588. doi: 10.1016/j.bmc.2011.03.017, PMID: PubMed DOI PMC
Deng Y., Adam V., Nepovimova E., Heger Z., Valko M., Wu Q., et al. . (2023). C-Jun N-terminal kinase signaling in cellular senescence. Arch. Toxicol. 97, 2089–2109. doi: 10.1007/s00204-023-03540-1, PMID: PubMed DOI
Deng T., Huang Y., Weng K., Lin S., Li Y., Shi G., et al. . (2019). TOE1 acts as a 3 exonuclease for telomerase RNA and regulates telomere maintenance. Nucleic Acids Res. 47, 391–405. doi: 10.1093/nar/gky1019, PMID: PubMed DOI PMC
Deng H., Takashima S., Paul M., Guo M., Hartenstein V. (2018). Mitochondrial dynamics regulates Drosophila intestinal stem cell differentiation. Cell Death Discov. 4:81. doi: 10.1038/s41420-018-0083-0, PMID: PubMed DOI PMC
Deng X., Terunuma H. (2024). Adoptive NK cell therapy: a potential revolutionary approach in longevity therapeutics. Immun Ageing. 21:43. doi: 10.1186/s12979-024-00451-2 PubMed DOI PMC
Deng P., Yuan Q., Cheng Y., Li J., Liu Z., Liu Y., et al. . (2021). Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell 28, 1057–1073.e7. doi: 10.1016/j.stem.2021.01.010, PMID: PubMed DOI PMC
Denham J. (2020). Telomere regulation: lessons learnt from mice and men, potential opportunities in horses. Anim. Genet. 51, 3–13. doi: 10.1111/age.12870, PMID: PubMed DOI
Denhez B., Rousseau M., Dancosst D.-A., Lizotte F., Guay A., Auger-Messier M., et al. . (2019). Diabetes-induced DUSP4 reduction promotes Podocyte dysfunction and progression of diabetic nephropathy. Diabetes 68, 1026–1039. doi: 10.2337/db18-0837, PMID: PubMed DOI
Ding Q., Zhang W., Cheng C., Mo F., Chen L., Peng G., et al. . (2020). Dioscin inhibits the growth of human osteosarcoma by inducing G2/M-phase arrest, apoptosis, and GSDME-dependent cell death in vitro and in vivo. J. Cell. Physiol. 235, 2911–2924. doi: 10.1002/jcp.29197, PMID: PubMed DOI
Du Y. J., Gao Y., Zeng B., Fan X. L., Yang D. Y., Yang M. Y. (2021). Effects of anti-aging interventions on intestinal microbiota. Gut Microbes 13:1994835. doi: 10.1080/19490976.2021.1994835, PMID: PubMed DOI PMC
Du X.-H., Ke S.-B., Liang X.-Y., Gao J., Xie X.-X., Qi L.-Z., et al. . (2023). USP14 promotes colorectal cancer progression by targeting JNK for stabilization. Cell Death Dis. 14:56. doi: 10.1038/s41419-023-05579-5, PMID: PubMed DOI PMC
Dubrovsky Y. V., Samsa W. E., Kondratov R. V. (2010). Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice. Aging-Us 2, 936–944. doi: 10.18632/aging.100241, PMID: PubMed DOI PMC
Elmallah M. I. Y., Cordonnier M., Vautrot V., Chanteloup G., Garrido C., Gobbo J. (2020). Membrane-anchored heat-shock protein 70 (Hsp70) in cancer. Cancer Lett. 469, 134–141. doi: 10.1016/j.canlet.2019.10.037 PubMed DOI
Erdel F., Kratz K., Willcox S., Griffith J. D., Greene E. C., de Lange T. (2017). Telomere recognition and assembly mechanism of mammalian Shelterin. Cell Rep. 18, 41–53. doi: 10.1016/j.celrep.2016.12.005 PubMed DOI PMC
Fafian-Labora J. A., O'Loghlen A. (2020). Classical and nonclassical intercellular communication in senescence and ageing. Trends Cell Biol. 30, 628–639. doi: 10.1016/j.tcb.2020.05.003 PubMed DOI
Faust H. J., Zhang H., Han J., Wolf M. T., Jeon O. H., Sadtler K., et al. . (2020). IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J. Clin. Invest. 130, 5493–5507. doi: 10.1172/JCI134091, PMID: PubMed DOI PMC
Fawad J. A., Luzader D. H., Hanson G. F., Moutinho T. J., Jr., McKinney C. A., Mitchell P. G., et al. . (2022). Histone deacetylase inhibition by gut microbe-generated short-chain fatty acids entrains intestinal epithelial circadian rhythms. Gastroenterology 163, 1377–1390.e11. doi: 10.1053/j.gastro.2022.07.051, PMID: PubMed DOI PMC
Feng Y., Chambers J. W., Iqbal S., Koenig M., Park H., Cherry L., et al. . (2013). A small molecule bidentate-binding dual inhibitor probe of the LRRK2 and JNK kinases. ACS Chem. Biol. 8, 1747–1754. doi: 10.1021/cb3006165, PMID: PubMed DOI PMC
Feng D., Xiong Q., Zhang F., Shi X., Xu H., Wei W., et al. . (2022). Identification of a novel nomogram to predict progression based on the circadian clock and insights into the tumor immune microenvironment in prostate Cancer. Front. Immunol. 13:777724. doi: 10.3389/fimmu.2022.777724, PMID: PubMed DOI PMC
Fu X., He Q., Tao Y., Wang M., Wang W., Wang Y., et al. . (2021). Recent advances in tissue stem cells. Sci. China Life Sci. 64, 1998–2029. doi: 10.1007/s11427-021-2007-8 PubMed DOI
Gan T., Fan L., Zhao L., Misra M., Liu M., Zhang M., et al. . (2021). JNK signaling in Drosophila aging and longevity. Int. J. Mol. Sci. 22:9649. doi: 10.3390/ijms22179649 PubMed DOI PMC
Gao W., Wang Y., Hwang E., Lin P., Bae J., Seo S. A., et al. . (2018). Rubus idaeus L. (red raspberry) blocks UVB-induced MMP production and promotes type I procollagen synthesis via inhibition of MAPK/AP-1, NF-κβ and stimulation of TGF-β/Smad, Nrf2 in normal human dermal fibroblasts. J. Photochem. Photobiol. B 185, 241–253. doi: 10.1016/j.jphotobiol.2018.06.007, PMID: PubMed DOI
Gavia-Garcia G., Rosado-Perez J., Arista-Ugalde T. L., Aguiniga-Sanchez I., Santiago-Osorio E., Mendoza-Nunez V. M. (2021). Telomere length and oxidative stress and its relation with metabolic syndrome components in the aging. Biology-Basel 10:253. doi: 10.3390/biology10040253, PMID: PubMed DOI PMC
Geng J., Yang C., Wang B., Zhang X., Hu T., Gu Y., et al. . (2018). Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed. Pharmacother. 97, 941–947. doi: 10.1016/j.biopha.2017.11.016, PMID: PubMed DOI
Girotra M., Chiang Y.-H., Charmoy M., Ginefra P., Hope H. C., Bataclan C., et al. . (2023). Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune systems. Nature Aging 3, 1057–1066. doi: 10.1038/s43587-023-00473-3, PMID: PubMed DOI
Gomez-Stallons M. V. (2016). BMP signaling and intersecting molecular mechanisms in calcific aortic valve disease. Cincinnati, OH: University of Cincinnati.
Graczyk P. P. (2013). JNK inhibitors as anti-inflammatory and neuroprotective agents. Future Med. Chem. 5, 539–551. doi: 10.4155/fmc.13.34 PubMed DOI
Greenberg S., Horan G., Bennett B., Blease K., Ye Y., Azaryan A., et al. . (2017). Late breaking abstract-evaluation of the JNK inhibitor, CC-90001, in a phase 1b pulmonary fibrosis trial. Eur. Respir. J. 50:OA474. doi: 10.1183/1393003.congress-2017.OA474 DOI
Grynberg K., Ozols E., Mulley W. R., Davis R. J., Flavell R. A., Nikolic-Paterson D. J., et al. . (2021). JUN amino-terminal kinase 1 signaling in the proximal tubule causes cell death and acute renal failure in rat and mouse models of renal ischemia/reperfusion injury. Am. J. Pathol. 191, 817–828. doi: 10.1016/j.ajpath.2021.02.004, PMID: PubMed DOI
Gunaratnam K., Vidal C., Boadle R., Thekkedam C., Duque G. (2013). Mechanisms of palmitate-induced cell death in human osteoblasts. Biology Open 2, 1382–1389. doi: 10.1242/bio.20136700, PMID: PubMed DOI PMC
Gupta S., Su H., Agrawal S., Gollapudi S. (2018). Molecular changes associated with increased TNF-alpha-induced apoptotis in naive (T-N) and central memory (T-CM) CD8+T cells in aged humans. Immun. Ageing 15, 1–10. doi: 10.1186/s12979-017-0109-0 PubMed DOI PMC
Han S.-Y. (2008). C-Jun N-terminal kinase signaling inhibitors under development. Toxicol. Res. 24, 93–100. doi: 10.5487/TR.2008.24.2.093, PMID: PubMed DOI PMC
Han Z., Boyle D. L., Chang L., Bennett B., Karin M., Yang L., et al. . (2001). C-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J. Clin. Invest. 108, 73–81. doi: 10.1172/JCI12466, PMID: PubMed DOI PMC
Hashikawa K., Tsuruta A., Yamakawa W., Yasukochi S., Koyanagi S., Ohdo S. (2023). Senescence-induced alteration of circadian phagocytic activity of retinal pigment epithelium cell line ARPE-19. Biochem. Biophys. Res. Commun. 658, 88–96. doi: 10.1016/j.bbrc.2023.03.070 PubMed DOI
He J., Liu T., Li Y., Mi X., Han D., Yang N., et al. . (2021). JNK inhibition alleviates delayed neurocognitive recovery after surgery by limiting microglia pyroptosis. Int. Immunopharmacol. 99:107962. doi: 10.1016/j.intimp.2021.107962, PMID: PubMed DOI
Heddes M., Altaha B., Niu Y., Reitmeier S., Kleigrewe K., Haller D., et al. . (2022). The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis. Nat. Commun. 13:6038. doi: 10.1038/s41467-022-33609-x PubMed DOI PMC
Hegab A. E., Ozaki M., Meligy F. Y., Nishino M., Kagawa S., Ishii M., et al. . (2019). Calorie restriction enhances adult mouse lung stem cells function and reverses several ageing-induced changes. J. Tissue Eng. Regen. Med. 13, 295–308. doi: 10.1002/term.2792, PMID: PubMed DOI
Herrera S. C., Bach E. A. (2018). JNK signaling triggers spermatogonial dedifferentiation during chronic stress to maintain the germline stem cell pool in the Drosophila testis. eLife 7:e36095. doi: 10.7554/eLife.36095, PMID: PubMed DOI PMC
Hodge B. A., Meyerhof G. T., Katewa S. D., Lian T., Lau C., Bar S., et al. . (2022). Dietary restriction and the transcription factor clock delay eye aging to extend lifespan in Drosophila Melanogaster. Nat. Commun. 13:3156. doi: 10.1038/s41467-022-30975-4, PMID: PubMed DOI PMC
Hoffman J., Bakshi V., Parikh I., Guo J., Armstrong R., Estus S., et al. . (2016). Aging increases markers of inflammation and alters brain-gut interactions. FASEB J. 30, 1156–1159. doi: 10.1096/fasebj.30.1_supplement.1156.9 DOI
Hoffmann J., Richardson G., Haendeler J., Altschmied J., Andres V., Spyridopoulos I. (2021). Telomerase as a therapeutic target in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 41, 1047–1061. doi: 10.1161/ATVBAHA.120.315695, PMID: PubMed DOI
Hoseini Z., Sepahvand F., Rashidi B., Sahebkar A., Masoudifar A., Mirzaei H. (2018). NLRP3 inflammasome: its regulation and involvement in atherosclerosis. J. Cell. Physiol. 233, 2116–2132. doi: 10.1002/jcp.25930 PubMed DOI
Huang J.-L., Zhang F., Su M., Li J., Yi W., Hou L.-X., et al. . (2021). MeCP2 prevents age-associated cognitive decline via restoring synaptic plasticity in a senescence-accelerated mouse model. Aging Cell 20:e13451. doi: 10.1111/acel.13451, PMID: PubMed DOI PMC
Igarashi H., Ohno K., Matsuki N., Fujiwara-Igarashi A., Kanemoto H., Fukushima K., et al. . (2017). Analysis of fecal short chain fatty acid concentration in miniature dachshunds with inflammatory colorectal polyps. J. Vet. Med. Sci. 79, 1727–1734. doi: 10.1292/jvms.17-0165 PubMed DOI PMC
Iijima H., Gilmer G., Wang K., Bean A. C., He Y., Lin H., et al. . (2023). Age-related matrix stiffening epigenetically regulates alpha-klotho expression and compromises chondrocyte integrity. Nat. Commun. 14:18. doi: 10.1038/s41467-022-35359-2, PMID: PubMed DOI PMC
Jamal S. B., Ismail S., Yousaf R., Qazi A. S., Iftikhar S., Abbasi S. W. (2023). Exploring novel 1-Hydroxynaphthalene-2-Carboxanilides based inhibitors against C-Jun N-terminal kinases through molecular dynamic simulation and WaterSwap analysis. Appl. Biochem. Biotechnol. 196, 1803–1819. doi: 10.1007/s12010-023-04638-z PubMed DOI
Jeffery I. B., Lynch D. B., O'Toole P. W. (2016). Composition and temporal stability of the gut microbiota in older persons. ISME J. 10, 170–182. doi: 10.1038/ismej.2015.88, PMID: PubMed DOI PMC
Jensen B. A. H., Holm J. B., Larsen I. S., von Burg N., Derer S., Sonne S. B., et al. . (2021). Lysates of Methylococcus capsulatus Bath induce a lean-like microbiota, intestinal FoxP3+ RORγt+ IL-17+ Tregs and improve metabolism. Nat. Commun. 12:1093. doi: 10.1038/s41467-021-21408-9, PMID: PubMed DOI PMC
Jia L., Wang W., Liang J., Niu S., Wang Y., Yang J., et al. . (2023). Analyzing the cellular and molecular atlas of ovarian mesenchymal cells provides a strategy against female reproductive aging. Sci. China Life Sci. 66, 2818–2836. doi: 10.1007/s11427-022-2335-6, PMID: PubMed DOI
Jiang H., Tian A., Jiang J. (2016). Intestinal stem cell response to injury: lessons from Drosophila. Cell. Mol. Life Sci. 73, 3337–3349. doi: 10.1007/s00018-016-2235-9, PMID: PubMed DOI PMC
Jiang Y., Wang S., Lin W., Gu J., Li G., Shao Y. (2023). BMAL1 promotes Valvular interstitial Cells' osteogenic differentiation through NF-κB/AKT/MAPK pathway. J. Cardiovasc. Dev. Dis. 10:110. doi: 10.3390/jcdd10030110, PMID: PubMed DOI PMC
Jiang W., Zhang X., Zhou A.-L. (2016). The role of TLR4/P38/JNK signaling pathway in apoptosis of hippocampal neurons. Chin. J. App. Physiol. 32, 571–576. doi: 10.13459/j.cnki.cjap.2016.06.019, PMID: PubMed DOI
Jiang N., Zhao Z. (2022). Intestinal aging is alleviated by uridine via regulating inflammation and oxidative stress in vivo and in vitro. Cell Cycle 21, 1519–1531. doi: 10.1080/15384101.2022.2055252, PMID: PubMed DOI PMC
Joo J. C., Hwang J. H., Jo E., Kim Y.-R., Kim D. J., Lee K.-B., et al. . (2017). Cordycepin induces apoptosis by caveolin-1-mediated JNK regulation of Foxo3a in human lung adenocarcinoma. Oncotarget 8, 12211–12224. doi: 10.18632/oncotarget.14661, PMID: PubMed DOI PMC
Justet A., Ghanem M., Boghanim T., Hachem M., Vasarmidi E., Jaillet M., et al. . (2022). FGF19 is downregulated in idiopathic pulmonary fibrosis and inhibits lung fibrosis in mice. Am. J. Respir. Cell Mol. Biol. 67, 173–187. doi: 10.1165/rcmb.2021-0246OC, PMID: PubMed DOI
Kamal N. S. M., Safuan S., Shamsuddin S., Foroozandeh P. (2020). Aging of the cells: insight into cellular senescence and detection methods. Eur. J. Cell Biol. 99:151108. doi: 10.1016/j.ejcb.2020.151108, PMID: PubMed DOI
Kaneko M., Saito Y., Saito H., Matsumoto T., Matsuda Y., Vaught J. L., et al. . (1997). Neurotrophic 3,9-bis (alkylthio)methyl - and-bis(alkoxymethyl)-K-252a derivatives. J. Med. Chem. 40, 1863–1869. doi: 10.1021/jm970031d, PMID: PubMed DOI
Kaoud T. S., Mitra S., Lee S., Taliaferro J., Cantrell M., Linse K. D., et al. . (2011). Development of JNK2-selective peptide inhibitors that inhibit breast Cancer cell migration. ACS Chem. Biol. 6, 658–666. doi: 10.1021/cb200017n, PMID: PubMed DOI PMC
Kelly J. R., Kennedy P. J., Cryan J. F., Dinan T. G., Clarke G., Hyland N. P. (2015). Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci. 9:166028. doi: 10.3389/fncel.2015.00392 PubMed DOI PMC
Kim K. S., Choi Y. J., Jang D. S., Lee S. (2022). 2-O-beta-D-Glucopyranosyl-4,6-dihydroxybenzaldehyde isolated from Morus alba (mulberry) fruits suppresses damage by regulating oxidative and inflammatory responses in TNF-alpha-induced human dermal fibroblasts. Int. J. Mol. Sci. 23:14802. doi: 10.3390/ijms232314802, PMID: PubMed DOI PMC
Kim K. M., Mura-Meszaros A., Tollot M., Krishnan M. S., Gründl M., Neubert L., et al. . (2022). Taz protects hematopoietic stem cells from an aging-dependent decrease in PU.1 activity. Nature. Communications 13:5187. doi: 10.1038/s41467-022-32970-1 PubMed DOI PMC
Kim K.-H., Park B., Rhee D.-K., Pyo S. (2015). Acrylamide induces senescence in macrophages through a process involving ATF3, ROS, p38/JNK, and a telomerase-independent pathway. Chem. Res. Toxicol. 28, 71–86. doi: 10.1021/tx500341z PubMed DOI
Kim H.-N., Ponte F., Warren A., Ring R., Iyer S., Han L., et al. . (2021). A decrease in NAD+ contributes to the loss of osteoprogenitors and bone mass with aging. NPJ Aging Mech. Dis. 7:8. doi: 10.1038/s41514-021-00058-7, PMID: PubMed DOI PMC
Kong F., Hua Y., Zeng B., Ning R., Li Y., Zhao J. (2016). Gut microbiota signatures of longevity. Curr. Biol. 26, R832–R833. doi: 10.1016/j.cub.2016.08.015 PubMed DOI
Kotwica-Rolinska J., Chodakova L., Smykal V., Damulewicz M., Provaznik J., Wu B. C.-H., et al. . (2022). Loss of Timeless underlies an evolutionary transition within the circadian clock. Mol. Biol. Evol. 39:msab346. doi: 10.1093/molbev/msab346, PMID: PubMed DOI PMC
Krenitsky V. P., Nadolny L., Delgado M., Ayala L., Clareen S. S., Hilgraf R., et al. . (2012). Discovery of CC-930, an orally active anti-fibrotic JNK inhibitor. Bioorg. Med. Chem. Lett. 22, 1433–1438. doi: 10.1016/j.bmcl.2011.12.027, PMID: PubMed DOI
Kumar A., Singh U. K., Kini S. G., Garg V., Agrawal S., Tomar P. K., et al. . (2015). JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases. Future Med. Chem. 7, 2065–2086. doi: 10.4155/fmc.15.132, PMID: PubMed DOI
Lan C.-C. E., Hung Y.-T., Fang A.-H., Wu C.-S. (2019). Effects of irradiance on UVA-induced skin aging. J. Dermatol. Sci. 94, 220–228. doi: 10.1016/j.jdermsci.2019.03.005 PubMed DOI
Lanna A., Gomes D. C. O., Muller-Durovic B., McDonnell T., Escors D., Gilroy D. W., et al. . (2017). A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat. Immunol. 18, 354–363. doi: 10.1038/ni.3665, PMID: PubMed DOI PMC
Lanna A., Vaz B., D'Ambra C., Valvo S., Vuotto C., Chiurchiu V., et al. . (2022). An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory. Nat. Cell Biol. 24, 1461–1474. doi: 10.1038/s41556-022-00991-z, PMID: PubMed DOI PMC
Latham S. L., O'Donnell Y. E. I., Croucher D. R. (2022). Non-kinase targeting of oncogenic c-Jun N-terminal kinase (JNK) signaling: the future of clinically viable cancer treatments. Biochem. Soc. Trans. 50, 1823–1836. doi: 10.1042/BST20220808, PMID: PubMed DOI PMC
Laurent M. R., Dedeyne L., Dupont J., Mellaerts B., Dejaeger M., Gielen E. (2019). Age-related bone loss and sarcopenia in men. Maturitas 122, 51–56. doi: 10.1016/j.maturitas.2019.01.006 PubMed DOI
Lee N. (2020). Exploring the intracellular mechanisms associated with Jnk Signalling in liver cancers. Leeds: University of Leeds.
Lee K. J., Jang Y. O., Cha S.-K., Kim M. Y., Park K.-S., Eom Y. W., et al. . (2018). Expression of fibroblast growth factor 21 and beta-klotho regulates hepatic fibrosis through the nuclear factor-kappa B and c-Jun N-terminal kinase pathways. Gut Liver 12, 449–456. doi: 10.5009/gnl17443, PMID: PubMed DOI PMC
Lee J., Sul H. J., Choi H., Oh D. H., Shong M. (2022). Loss of thyroid gland circadian PER2 rhythmicity in aged mice and its potential association with thyroid cancer development. Cell Death Dis. 13:898. doi: 10.1038/s41419-022-05342-2, PMID: PubMed DOI PMC
Li N., Luo R., Zhang W., Wu Y., Hu C., Liu M., et al. . (2023). IL-17A promotes endothelial cell senescence by up-regulating the expression of FTO through activating JNK signal pathway. Biogerontology 24, 99–110. doi: 10.1007/s10522-022-09999-2, PMID: PubMed DOI
Li H., Meng H., Xu M., et al. . (2023). BMAL1 regulates osteoblast differentiation through mTOR/GSK3β/β-catenin pathway. J. Mol. Endocrinol. 70:e220181. doi: 10.1530/JME-22-0181 PubMed DOI
Li D., Su Y., Tu J., Wei R., Fan X., Yin H., et al. . (2016). Evolutionary conservation of the circadian gene timeout in Metazoa. Anim. Biol. 66, 1–11. doi: 10.1163/15707563-00002482 DOI
Li M., Sun L., Luo Y., Xie C., Pang Y., Li Y. (2014). High-mobility group box 1 released from astrocytes promotes the proliferation of cultured neural stem/progenitor cells. Int. J. Mol. Med. 34, 705–714. doi: 10.3892/ijmm.2014.1820, PMID: PubMed DOI PMC
Li S., Tian A., Li S., Han Y., Wang B., Jiang J. (2020). Gilgamesh (Gish)/CK1γ regulates tissue homeostasis and aging in adult Drosophila midgut. J. Cell Biol. 219:e201909103. doi: 10.1083/jcb.201909103, PMID: PubMed DOI PMC
Li K., Zheng J., Liu H., Gao Q., Yang M., Tang J., et al. . (2022). Whole-transcriptome sequencing revealed differentially expressed mRNAs and non-coding RNAs played crucial roles in NiONPs-induced liver fibrosis. Ecotoxicol. Environ. Saf. 248:114308. doi: 10.1016/j.ecoenv.2022.114308, PMID: PubMed DOI
Liang C., Ke Q., Liu Z., Ren J., Zhang W., Hu J., et al. . (2022). BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates. Nucleic Acids Res. 50, 3323–3347. doi: 10.1093/nar/gkac146 PubMed DOI PMC
Liang Q.-S., Xie J.-G., Yu C., Feng Z., Ma J., Zhang Y., et al. . (2021). Splenectomy improves liver fibrosis via tumor necrosis factor superfamily 14 (LIGHT) through the JNK/TGF-beta 1 signaling pathway. Exp. Mol. Med. 53, 393–406. doi: 10.1038/s12276-021-00574-2 PubMed DOI PMC
Liao B.-Y., Hu L.-L., Li H.-G., Xu Y., Sun S.-C., Wang J.-L. (2023). Toxicity of the mycotoxin Deoxynivalenol on early cleavage of mouse embryos by fluorescence intensity analysis. Microsc. Microanal. 29, 754–761. doi: 10.1093/micmic/ozad005, PMID: PubMed DOI
Lim H. K., Gurung R. L., Hande M. P. (2017). DNA-dependent protein kinase modulates the anti-cancer properties of silver nanoparticles in human cancer cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 824, 32–41. doi: 10.1016/j.mrgentox.2017.10.001, PMID: PubMed DOI
Liu W., Lim K.-L., Tan E.-K. (2022). Intestine-derived α-synuclein initiates and aggravates pathogenesis of Parkinson's disease in Drosophila. Transl. Neurodegener. 11, 1–18. doi: 10.1186/s40035-022-00318-w PubMed DOI PMC
Liu Z., Zheng S., Wang X., Qiu C., Guo Y. (2018). Novel ASK1 inhibitor AGI-1067 improves AGE-induced cardiac dysfunction by inhibiting MKKs/p38 MAPK and NF-kappa B apoptotic signaling. Febs. Open Bio. 8, 1445–1456. doi: 10.1002/2211-5463.12499, PMID: PubMed DOI PMC
Lo C.-H., Li L.-C., Yang S.-F., Tsai C.-F., Chuang Y.-T., Chu H.-J., et al. . (2022). MicroRNA let-7a,-7e and-133a attenuate hypoxia-induced atrial fibrosis via targeting collagen expression and the JNK pathway in HL1 Cardiomyocytes. Int. J. Mol. Sci. 23:9636. doi: 10.3390/ijms23179636, PMID: PubMed DOI PMC
Loeffler I. (2019). MKP2 suppresses TGF-beta 1-induced epithelial-to-mesenchymal transition through JNK inhibition. Clin. Sci. 133, 545–550. doi: 10.1042/CS20180881, PMID: PubMed DOI
Lombard C. (2019). Sorting through the JuNK: Using chemical and genetic tools to probe c-Jun N-terminal kinase Allostery and scaffolding, as well as a general methodology for studying localized kinase biology. Seattle, WA: University of Washington.
Lopez-Otin C., Blasco M. A., Partridge L., Serrano M., Kroemer G. (2023). Hallmarks of aging: An expanding universe. Cell 186, 243–278. doi: 10.1016/j.cell.2022.11.001, PMID: PubMed DOI
Madison A. A., Kiecolt-Glaser J. K. (2021). The gut microbiota and nervous system: age-defined and age-defying. Semin. Cell Dev. Biol. 116, 98–107. doi: 10.1016/j.semcdb.2020.12.009, PMID: PubMed DOI PMC
Martin C. R., Osadchiy V., Kalani A., Mayer E. A. (2018). The brain-gut-microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 6, 133–148. doi: 10.1016/j.jcmgh.2018.04.003, PMID: PubMed DOI PMC
Martin-Gallausiaux C., Marinelli L., Blottiere H. M., Larraufie P., Lapaque N. (2021). SCFA: mechanisms and functional importance in the gut. Proc. Nutr. Soc. 80, 37–49. doi: 10.1017/S0029665120006916 PubMed DOI
Mas-Bargues C., Sanz-Ros J., Roman-Dominguez A., Gimeno-Mallench L., Ingles M., Vina J., et al. . (2020). Extracellular vesicles from healthy cells improves cell function and Stemness in premature senescent stem cells by miR-302b and HIF-1α activation. Biomol. Ther. 10:957. doi: 10.3390/biom10060957, PMID: PubMed DOI PMC
Meng L. Q., Tang J. W., Wang Y., Zhao J. R., Shang M. Y., Zhang M., et al. . (2011). Astragaloside IV synergizes with ferulic acid to inhibit renal tubulointerstitial fibrosis in rats with obstructive nephropathy. Br. J. Pharmacol. 162, 1805–1818. doi: 10.1111/j.1476-5381.2011.01206.x, PMID: PubMed DOI PMC
Milenkovic D., Capel F., Combaret L., Comte B., Dardevet D., Evrard B., et al. . (2022). Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Crit. Rev. Food Sci. Nutr. 63, 11185–11210. doi: 10.1080/10408398.2022.2089870, PMID: PubMed DOI
Mili D., Abid K., Rjiba I., Kenani A. (2016). Effect of SP600125 on the mitotic spindle in HeLa cells, leading to mitotic arrest, endoreduplication and apoptosis. Mol. Cytogenet. 9, 1–7. doi: 10.1186/s13039-016-0296-y PubMed DOI PMC
Mitina M., Young S., Zhavoronkov A. (2020). Psychological aging, depression, and well-being. Aging-Us 12, 18765–18777. doi: 10.18632/aging.103880, PMID: PubMed DOI PMC
Mohammed S., Thadathil N., Selvarani R., Nicklas E. H., Wang D., Miller B. F., et al. . (2021). Necroptosis contributes to chronic inflammation and fibrosis in aging liver. Aging Cell 20:e13512. doi: 10.1111/acel.13512, PMID: PubMed DOI PMC
Montagne A., Barnes S. R., Sweeney M. D., Halliday M. R., Sagare A. P., Zhao Z., et al. . (2015). Blood-brain barrier breakdown in the aging human Hippocampus. Neuron 85, 296–302. doi: 10.1016/j.neuron.2014.12.032 PubMed DOI PMC
Mossad O., Batut B., Yilmaz B., Dokalis N., Mezoe C., Nent E., et al. . (2022). Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N-6-carboxymethyllysine. Nat. Neurosci. 25, 295–305. doi: 10.1038/s41593-022-01027-3, PMID: PubMed DOI
Musiek E. S., Holtzman D. M. (2016). Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354, 1004–1008. doi: 10.1126/science.aah4968, PMID: PubMed DOI PMC
Nakano T., Uchiyama K., Ogita K., Ota T., Takayama S., Yasuda R., et al. . (2018). Acetate promotes the wound healing of colonic epithelial cells via JNK activation. Gastroenterology 154:S922. doi: 10.1016/S0016-5085(18)33103-2 DOI
Nassan M., Videnovic A. (2022). Circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol. 18, 7–24. doi: 10.1038/s41582-021-00577-7 PubMed DOI
Neilsen B. K., Frodyma D. E., McCall J. L., Fisher K. W., Lewis R. E. (2019). eERK-mediated TIMELESS expression suppresses G2/M arrest in colon cancer cells. PLoS One 14:e0209224. doi: 10.1371/journal.pone.0209224, PMID: PubMed DOI PMC
Novakovsky G., Sasaki S., Fornes O., Omur M. E., Huang H., Bayly C. L., et al. . (2023). In silico discovery of small molecules for efficient stem cell differentiation into definitive endoderm. Stem Cell Rep. 18, 765–781. doi: 10.1016/j.stemcr.2023.01.008 PubMed DOI PMC
Oda Y., Takasu N. N., Ohno S. N., Shirakawa Y., Sugimura M., Nakamura T. J., et al. . (2022). Role of heterozygous and homozygous alleles in cryptochrome-deficient mice. Neurosci. Lett. 772:136415. doi: 10.1016/j.neulet.2021.136415 PubMed DOI
Okuno S., Saito A., Hayashi T., Chan P. H. (2004). The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J. Neurosci. Off. J. Soc. Neurosci. 24, 7879–7887. doi: 10.1523/JNEUROSCI.1745-04.2004, PMID: PubMed DOI PMC
Orberg E. T., Meedt E., Hiergeist A., Xue J., Ghimire S., Tiefgraber M., et al. . (2021). Longitudinal analysis of gut Bacteriome, Mycobiome, Virome and metabolome in allogeneic stem cell transplantation reveals susceptibility for acute graft-versus-host disease. Blood 138:332. doi: 10.1182/blood-2021-153026 DOI
Ouyang X., Zhou J., Lin L., Zhang Z., Luo S., Hu D. (2023). Pyroptosis, inflammasome, and gasdermins in tumor immunity. Innate Immun. 29, 3–13. doi: 10.1177/17534259221143216, PMID: PubMed DOI PMC
Ovadya Y., Landsberger T., Leins H., Vadai E., Gal H., Biran A., et al. . (2018). Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9:5435. doi: 10.1038/s41467-018-07825-3, PMID: PubMed DOI PMC
Palmer A. K., Tchkonia T., Kirkland J. L. (2021). Senolytics: potential for alleviating diabetes and its complications. Endocrinology 162:bqab058. doi: 10.1210/endocr/bqab058, PMID: PubMed DOI PMC
Pampurik C., De Seigneux S., Teso A. D. (2019). Metformin-associated lactic acidosis: myth or reality? Rev. Med. Suisse 15, 422–426. doi: 10.53738/REVMED.2019.15.639.0422, PMID: PubMed DOI
Pan X., Mota S., Zhang B. (2020). Circadian clock regulation on lipid metabolism and metabolic diseases. Adv. Exp. Med. Biol., 1276, 53–1266. doi: 10.1007/978-981-15-6082-8_5, PMID: PubMed DOI PMC
Papp S. J., Huber A.-L., Jordan S. D., Kriebs A., Nguyen M., Moresco J. J., et al. . (2015). DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. eLife 4:e04883. doi: 10.7554/eLife.04883, PMID: PubMed DOI PMC
Parico G. C. G., Partch C. L. (2020). The tail of cryptochromes: an intrinsically disordered cog within the mammalian circadian clock. Cell Commun. Signal. 18, 1–9. doi: 10.1186/s12964-020-00665-z PubMed DOI PMC
Park S.-J., Kim J.-H., Lee D. G., Kim J.-M., Lee D.-S. (2018). Peroxiredoxin 2 deficiency accelerates age-related ovarian failure through the reactive oxygen species-mediated JNK pathway in mice. Free Radic. Biol. Med. 123, 96–106. doi: 10.1016/j.freeradbiomed.2018.05.059, PMID: PubMed DOI
Parkinson Study Group (2004). The safety and tolerability of a mixed lineage kinase inhibitor (CEP-1347) in PD. Neurology 62, 330–332. doi: 10.1212/01.WNL.0000103882.56507.20, PMID: PubMed DOI
Parkinson Study Group PRECEPT Investigators (2007). Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology 69, 1480–1490. doi: 10.1212/01.wnl.0000277648.63931.c0 PubMed DOI
Pentinmikko N., Katajisto P. (2020). The role of stem cell niche in intestinal aging. Mech. Ageing Dev. 191:111330. doi: 10.1016/j.mad.2020.111330, PMID: PubMed DOI
Pietri P., Stefanadis C. (2021). Cardiovascular aging and longevity JACC state-of-the-art review. J. Am. Coll. Cardiol. 77, 189–204. doi: 10.1016/j.jacc.2020.11.023 PubMed DOI
Popmihajlov Z., Sutherland D. J., Horan G. S., Ghosh A., Lynch D. A., Noble P. W., et al. . (2022). CC-90001, a c-Jun N-terminal kinase (JNK) inhibitor, in patients with pulmonary fibrosis: design of a phase 2, randomised, placebo-controlled trial. BMJ Open Respir. Res. 9:e001060. doi: 10.1136/bmjresp-2021-001060, PMID: PubMed DOI PMC
Prasad K. N., Wu M., Bondy S. C. (2017). Telomere shortening during aging: attenuation by antioxidants and anti-inflammatory agents. Mech. Ageing Dev. 164, 61–66. doi: 10.1016/j.mad.2017.04.004, PMID: PubMed DOI
Praveenraj S. S., Sonali S., Anand N., Tousif H. A., Vichitra C., Kalyan M., et al. . (2022). The role of a gut microbial-derived metabolite, trimethylamine N-oxide (TMAO), in neurological disorders. Mol. Neurobiol. 59, 6684–6700. doi: 10.1007/s12035-022-02990-5 PubMed DOI
Qu J., Zhang S., He W., Liu S., Mao X., Yin L., et al. . (2022). Crucial function of Caveolin-1 in Deoxynivalenol-induced Enterotoxicity by activating ROS-dependent NLRP3 Inflammasome-mediated Pyroptosis. J. Agric. Food Chem. 70, 12968–12981. doi: 10.1021/acs.jafc.2c04854 PubMed DOI
Reddy P. H., Williams J., Smith F., Bhatti J. S., Kumar S., Vijayan M., et al. . (2017). MicroRNAs, aging, cellular senescence, and Alzheimer's disease. Prog. Mol. Biol. Transl. Sci. 146, 127–171. doi: 10.1016/bs.pmbts.2016.12.009, PMID: PubMed DOI
Relav L., Estienne A., Price C. A. (2021). Dual-specificity phosphatase 6 (DUSP6) mRNA and protein abundance is regulated by fibroblast growth factor 2 in sheep granulosa cells and inhibits c-Jun N-terminal kinase (MAPK8) phosphorylation. Mol. Cell. Endocrinol. 531:111297. doi: 10.1016/j.mce.2021.111297 PubMed DOI
Rossiello F., Jurk D., Passos J. F., di Fagagna F. D. A. (2022). Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 24, 135–147. doi: 10.1038/s41556-022-00842-x, PMID: PubMed DOI PMC
Rutkute K., Nikolova-Karakashian M. N. (2007). Regulation of insulin-like growth factor binding protein-1 expression during aging. Biochem. Biophys. Res. Commun. 361, 263–269. doi: 10.1016/j.bbrc.2007.06.079, PMID: PubMed DOI PMC
Ryu S., Baek I., Liew H. (2019). Sumoylated-synuclein translocates into the nucleus by karyopherin 6. Mol. Cell. Toxic. 15, 103–109. doi: 10.1007/s13273-019-0012-1 DOI
Sabapathy K. (2012). Role of the JNK pathway in human diseases. Prog. Mol. Biol. Transl. Sci. 106, 145–169. doi: 10.1016/B978-0-12-396456-4.00013-4 PubMed DOI
Salerno N., Marino F., Scalise M., Salerno L., Molinaro C., Filardo A., et al. . (2022). Pharmacological clearance of senescent cells improves cardiac remodeling and function after myocardial infarction in female aged mice. Mech. Ageing Dev. 208:111740. doi: 10.1016/j.mad.2022.111740 PubMed DOI
Sasaki L., Hamada Y., Yarimizu D., Suzuki T., Nakamura H., Shimada A., et al. . (2022). Intracrine activity involving NAD-dependent circadian steroidogenic activity governs age-associated meibomian gland dysfunction. Nature Aging 2, 105–114. doi: 10.1038/s43587-021-00167-8, PMID: PubMed DOI PMC
Sato S., Solanas G., Oliveira Peixoto F., Bee L., Symeonidi A., Schmidt M. S., et al. . (2017). Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell 170, 664–677.e11. doi: 10.1016/j.cell.2017.07.042, PMID: PubMed DOI PMC
Schibler U. (2020). Senescence of timing reverted: NAD(+) rejuvenates the circadian clock. Mol. Cell 78, 805–807. doi: 10.1016/j.molcel.2020.05.010, PMID: PubMed DOI
Schuliga M., Read J., Knight D. A. (2021). Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Res. Rev. 70:101405. doi: 10.1016/j.arr.2021.101405, PMID: PubMed DOI
Sedrak M. S., Cohen H. J. (2023). The aging-Cancer cycle: mechanisms and opportunities for intervention. J. Gerontol. A Biol. Sci. Med. Sci. 78, 1234–1238. doi: 10.1093/gerona/glac247, PMID: PubMed DOI PMC
Seidel J., Valenzano D. R. (2018). The role of the gut microbiome during host ageing. F1000Res 7:F1000. doi: 10.12688/f1000research.15121.1 PubMed DOI PMC
Sharma N., Deshmukh R., Bedi K. L. (2010). SP600125, a competitive inhibitor of JNK attenuates streptozotocin induced neurocognitive deficit and oxidative stress in rats. Pharmacol. Biochem. Behav. 96, 386–394. doi: 10.1016/j.pbb.2010.06.010, PMID: PubMed DOI
Shen X. M., Li M. Z., Mao Z. B., Yu W. H. (2018). Loss of circadian protein TIMELESS accelerates the progression of cellular senescence. Biochem. Biophys. Res. Commun. 503, 2784–2791. doi: 10.1016/j.bbrc.2018.08.040, PMID: PubMed DOI
Sheng J., Li H., Dai Q., Lu C., Xu M., Zhang J., et al. . (2019). DUSP1 recuses diabetic nephropathy via repressing JNK-Mff-mitochondrial fission pathways. J. Cell. Physiol. 234, 3043–3057. doi: 10.1002/jcp.27124, PMID: PubMed DOI
Shin D., Lee K.-W. (2021). CLOCK gene variation is associated with the incidence of metabolic syndrome modulated by monounsaturated fatty acids. J. Pers. Med. 11:412. doi: 10.3390/jpm11050412, PMID: PubMed DOI PMC
Shoeb M., Meier H. C. S., Antonini J. M. (2021). Telomeres in toxicology: occupational health. Pharmacol. Ther. 220:107742. doi: 10.1016/j.pharmthera.2020.107742, PMID: PubMed DOI PMC
Shon J., Han Y., Park Y. J. (2022). Effects of dietary fat to carbohydrate ratio on obesity risk depending on genotypes of circadian genes. Nutrients 14:478. doi: 10.3390/nu14030478, PMID: PubMed DOI PMC
Snell T. W., Johnston R. K., Rabeneck B., Zipperer C., Teat S. (2014). Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera). Exp. Gerontol. 52, 55–69. doi: 10.1016/j.exger.2014.01.022, PMID: PubMed DOI PMC
Sochal M., Binienda A., Ditmer M., Malecka-Wojciesko E., Bialasiewicz P., Fichna J., et al. . (2023). Relation between symptoms of insomnia, depression, sleep quality, anti-tumor necrosis factor therapy and disrupted circadian clock genes' expression in inflammatory bowel disease. Pol. Arch. Intern. Med. 133:16487. doi: 10.20452/pamw.16487 PubMed DOI
Soni S. K., Basu P., Singaravel M., Sharma R., Pandi-Perumal S. R., Cardinali D. P., et al. . (2021). Sirtuins and the circadian clock interplay in cardioprotection: focus on sirtuin 1. Cell. Mol. Life Sci. 78, 2503–2515. doi: 10.1007/s00018-020-03713-6, PMID: PubMed DOI PMC
Sorensen J. R., Skousen C., Holland A., Williams K., Hyldahl R. D. (2018). Acute extracellular matrix, inflammatory and MAPK response to lengthening contractions in elderly human skeletal muscle. Exp. Gerontol. 106, 28–38. doi: 10.1016/j.exger.2018.02.013, PMID: PubMed DOI
Sorrentino G., Perino A., Yildiz E., El Alam G., Sleiman M. B., Gioiello A., et al. . (2020). Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology 159, 956–968.e8. doi: 10.1053/j.gastro.2020.05.067, PMID: PubMed DOI
Souto E. B., Fernandes A. R., Martins-Gomes C., Coutinho T. E., Durazzo A., Lucarini M., et al. . (2020). Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals. Appl. Sci. 10:1594. doi: 10.3390/app10051594 DOI
Sovran B., Hugenholtz F., Elderman M., Van Beek A. A., Graversen K., Huijskes M., et al. . (2019). Age-associated impairment of the mucus barrier function is associated with profound changes in microbiota and immunity. Sci. Rep. 9:437. doi: 10.1038/s41598-018-35228-3 PubMed DOI PMC
Stebbins J. L., De S. K., Pavlickova P., Chen V., Machleidt T., Chen L.-H., et al. . (2011). Design and characterization of a potent and selective dual ATP-and substrate-competitive Subnanomolar bidentate c-Jun N-terminal kinase (JNK) inhibitor. J. Med. Chem. 54, 6206–6214. doi: 10.1021/jm200479c, PMID: PubMed DOI PMC
Stokes K., Cooke A., Chang H., Weaver D. R., Breault D. T., Karpowicz P. (2017). The circadian clock gene BMAL1 coordinates intestinal regeneration. Cell. Mol. Gastroenterol. Hepatol. 4, 95–114. doi: 10.1016/j.jcmgh.2017.03.011, PMID: PubMed DOI PMC
Stout M. B., Justice J. N., Nicklas B. J., Kirkland J. L. (2017). Physiological aging: links among adipose tissue dysfunction, diabetes, and frailty. Physiology 32, 9–19. doi: 10.1152/physiol.00012.2016, PMID: PubMed DOI PMC
Sugimoto T., Morioka N., Sato K., Hisaoka K., Nakata Y. (2011). Noradrenergic regulation of period1 expression in spinal astrocytes is involved in protein kinase a, c-Jun N-terminal kinase and extracellular signal-regulated kinase activation mediated by α1-and β2-adrenoceptors. Neuroscience 185, 1–13. doi: 10.1016/j.neuroscience.2011.04.024, PMID: PubMed DOI
Takahashi R., Hirata Y., Sakitani K., Nakata W., Kinoshita H., Hayakawa Y., et al. . (2013). Therapeutic effect of c-Jun N-terminal kinase inhibition on pancreatic cancer. Cancer Sci. 104, 337–344. doi: 10.1111/cas.12080, PMID: PubMed DOI PMC
Tardif J.-C., Gregoire J., Lavoie M.-A., L'Allier P. L. (2003). Pharmacologic prevention of both restenosis and atherosclerosis progression: AGI-1067, probucol, statins, folic acid and other therapies. Curr. Opin. Lipidol. 14, 615–620. doi: 10.1097/00041433-200312000-00010 PubMed DOI
Tatge L., Solano Fonseca R., Douglas P. M. (2023). A framework for intestinal barrier dysfunction in aging. Nature Aging 3, 1172–1174. doi: 10.1038/s43587-023-00492-0, PMID: PubMed DOI
Top D., Harms E., Syed S., Adams E. L., Saez L. (2016). GSK-3 and CK2 kinases converge on Timeless to regulate the master clock. Cell Rep. 16, 357–367. doi: 10.1016/j.celrep.2016.06.005, PMID: PubMed DOI PMC
Topiwala A. C., Nichols T., Williams L. Z. J., Robinson E., Alfaro-Almagro F. P., Taschler B. L., et al. . (2023). Telomere length and brain imaging phenotypes in UK biobank. PLoS One 18:e0282363. doi: 10.1371/journal.pone.0282363, PMID: PubMed DOI PMC
Tsai C.-F., Yang S.-F., Lo C.-H., Chu H.-J., Ueng K.-C. (2021). Role of the ROS-JNK signaling pathway in hypoxia-induced atrial fibrotic responses in HL-1 Cardiomyocytes. Int. J. Mol. Sci. 22:3249. doi: 10.3390/ijms22063249, PMID: PubMed DOI PMC
Tsuchida K., Sakiyama N., Ogura Y., Kobayashi M. (2023). Skin lightness affects ultraviolet A-induced oxidative stress: evaluation using ultraweak photon emission measurement. Exp. Dermatol. 32, 146–153. doi: 10.1111/exd.14690, PMID: PubMed DOI
Uchida Y., Osaki T., Yamasaki T., Shimomura T., Hata S., Horikawa K., et al. . (2012). Involvement of stress kinase mitogen-activated protein kinase kinase 7 in regulation of mammalian circadian clock. J. Biol. Chem. 287, 8318–8326. doi: 10.1074/jbc.M111.308908, PMID: PubMed DOI PMC
Ulgherait M., Midoun A. M., Park S. J., Gatto J. A., Tener S. J., Siewert J., et al. . (2021). Circadian autophagy drives iTRF-mediated longevity. Nature 598, 353–358. doi: 10.1038/s41586-021-03934-0, PMID: PubMed DOI PMC
Usui Y., Kimura Y., Satoh T., Takemura N., Ouchi Y., Ohmiya H., et al. . (2018). Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp bulgaricus 2038 and Streptococcus thermophilus 1131 on mice. Int. Immunol. 30, 319–331. doi: 10.1093/intimm/dxy035, PMID: PubMed DOI
van der Velden J. L. J., Ye Y., Nolin J. D., Hoffman S. M., Chapman D. G., Lahue K. G., et al. . (2016). JNK inhibition reduces lung remodeling and pulmonary fibrotic systemic markers. Clin. Transl. Med. 5:36. doi: 10.1186/s40169-016-0117-2, PMID: PubMed DOI PMC
van Gastel N., Carmeliet G. (2021). Metabolic regulation of skeletal cell fate and function in physiology and disease. Nat. Metab. 3, 11–20. doi: 10.1038/s42255-020-00321-3 PubMed DOI
Victorelli S., Salmonowicz H., Chapman J., Martini H., Vizioli M. G., Riley J. S., et al. . (2023). Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636. doi: 10.1038/s41586-023-06621-4, PMID: PubMed DOI PMC
Vizioli M. G., Liu T., Miller K. N., Robertson N. A., Gilroy K., Lagnado A. B., et al. . (2020). Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 34, 428–445. doi: 10.1101/gad.331272.119, PMID: PubMed DOI PMC
Wade H., Su Q. (2021). Akkermansia muciniphila ameliorates inflammatory bowel disease by modulating gut tight junctions in mice. Proc. Nutr. Soc. 80:E144. doi: 10.1017/S0029665121002676 DOI
Walters H. (2023). Bacterial induction of B cell senescence drives gut microbiota aging. Nature Aging 3:634. doi: 10.1038/s43587-023-00444-8, PMID: PubMed DOI
Wang J., Deng B., Liu Q., Huang Y., Chen W., Li J., et al. . (2020). Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis. 11:574. doi: 10.1038/s41419-020-02777-3, PMID: PubMed DOI PMC
Wang H., Lv D., Jiang S., Hou Q., Zhang L., Li S., et al. . (2022). Complement induces podocyte pyroptosis in membranous nephropathy by mediating mitochondrial dysfunction. Cell Death Dis. 13:281. doi: 10.1038/s41419-022-04737-5, PMID: PubMed DOI PMC
Wang X., Tan Y., Liu F., Wang J., Liu F., Zhang Q., et al. . (2023). Pharmacological network analysis of the functions and mechanism of kaempferol from Du Zhong in intervertebral disc degeneration (IDD). J. Orthop. Translat. 39, 135–146. doi: 10.1016/j.jot.2023.01.002 PubMed DOI PMC
Wang Y., Yang J., Wang W., Sanidad K. Z., Cinelli M. A., Wan D., et al. . (2020). Soluble epoxide hydrolase is an endogenous regulator of obesity-induced intestinal barrier dysfunction and bacterial translocation. Proc. Natl. Acad. Sci. USA 117, 8431–8436. doi: 10.1073/pnas.1916189117, PMID: PubMed DOI PMC
Wang Y., Zhang Y., Wei Z., Li H., Zhou H., Zhang Z., et al. . (2009). JNK inhibitor protects dopaminergic neurons by reducing COX-2 expression in the MPTP mouse model of subacute Parkinson's disease. J. Neurol. Sci. 285, 172–177. doi: 10.1016/j.jns.2009.06.034, PMID: PubMed DOI
Wei Y., Lan B., Zheng T., Yang L., Zhang X., Cheng L., et al. . (2023). GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis. Nat. Commun. 14:929. doi: 10.1038/s41467-023-36614-w, PMID: PubMed DOI PMC
Wiley C. D., Campisi J. (2021). The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat. Metab. 3, 1290–1301. doi: 10.1038/s42255-021-00483-8, PMID: PubMed DOI PMC
Wojdyla L., Stone A. L., Sethakorn N., Uppada S. B., Devito J. T., Bissonnette M., et al. . (2014). T-oligo as an anticancer agent in colorectal cancer. Biochem. Biophys. Res. Commun. 446, 596–601. doi: 10.1016/j.bbrc.2014.03.013, PMID: PubMed DOI PMC
Wu Z., Chen S., He Y., Zhang D., Zou S., Xie J., et al. . (2022a). Connective tissue growth factor promotes cell-to-cell communication in human periodontal ligament stem cells via MAPK and PI3K pathway. J. Periodontol. 93, E60–E72. doi: 10.1002/JPER.21-0339, PMID: PubMed DOI
Wu Y., Pang Y., Wei W., Shao A., Deng C., Li X., et al. . (2020). Resveratrol protects retinal ganglion cell axons through regulation of the SIRT1-JNK pathway. Exp. Eye Res. 200:108249. doi: 10.1016/j.exer.2020.108249, PMID: PubMed DOI
Wu N., Shen H., Wang Y., He B., Zhang Y., Bai Y., et al. . (2017). Role of the PKC beta II/JNK signaling pathway in acute glucose fluctuation-induced apoptosis of rat vascular endothelial cells. Acta Diabetol. 54, 727–736. doi: 10.1007/s00592-017-0999-5, PMID: PubMed DOI
Wu Q. H., Wu W. D., Fu B. S., Shi L., Wang X., Kuca K. (2019). JNK signaling in cancer cell survival. Med. Res. Rev. 39, 2082–2104. doi: 10.1002/med.21574 PubMed DOI
Wu Z., Zhou Q., Li Y., Zhang N., Liu H. S., Chen C., et al. . (2022b). Assessment of cognitive function of the elderly by serum metabolites of brain-gut axis. Zhonghua Yi Xue Za Zhi 102, 125–129. doi: 10.3760/cma.j.cn112137-20210702-01496 PubMed DOI
Xiao X., Lai W. F., Xie H. F., Liu Y., Guo W. J., Liu Y. F., et al. . (2019). Targeting JNK pathway promotes human hematopoietic stem cell expansion. Cell Discov. 5:2. doi: 10.1038/s41421-018-0072-8, PMID: PubMed DOI PMC
Xie G. X., Jiang R. Q., Wang X. N., Liu P., Zhao A. H., Wu Y. R., et al. . (2021). Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis. EBioMedicine 66:103290. doi: 10.1016/j.ebiom.2021.103290, PMID: PubMed DOI PMC
Xing X., Huang H., Gao X., Yang J., Tang Q., Xu X., et al. . (2022). Local elimination of senescent cells promotes bone defect repair during aging. ACS Appl. Mater. Interfaces 14, 3885–3899. doi: 10.1021/acsami.1c22138, PMID: PubMed DOI
Xu S. H., Cai Y., Wei Y. H. (2014). mTOR signaling from cellular senescence to organismal aging. Aging Dis. 5, 263–273. doi: 10.14336/AD.2014.0500263, PMID: PubMed DOI PMC
Xu F., Cohen S. A., Greaney M. L., Earp J. E., Delmonico M. J. (2020). LongitudinalSex-SpecificPhysical function trends by age, race/ethnicity, and weight status. J. Am. Geriatr. Soc. 68, 2270–2278. doi: 10.1111/jgs.16638 PubMed DOI
Xu P., Elamin E., Elizalde M., Bours P. P. H. A., Pierik M. J., Masclee A. A. M., et al. . (2019). Modulation of intestinal epithelial permeability by plasma from patients with Crohn's disease in a three-dimensional cell culture model. Sci. Rep. 9:2030. doi: 10.1038/s41598-018-38322-8, PMID: PubMed DOI PMC
Xu L., Fu Y., Li Y., Han X. (2017). Cisplatin induces expression of drug resistance-related genes through c-Jun N-terminal kinase pathway in human lung cancer cells. Cancer Chemother. Pharmacol. 80, 235–242. doi: 10.1007/s00280-017-3355-0, PMID: PubMed DOI
Xu Q., Fu Q., Li Z., Liu H., Wang Y., Lin X., et al. . (2021). The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat. Metab. 3, 1706–1726. doi: 10.1038/s42255-021-00491-8, PMID: PubMed DOI PMC
Xu Y., Hu J., Yilmaz D. E., Bachmann S. (2021). Connexin43 is differentially distributed within renal vasculature and mediates profibrotic differentiation in medullary fibroblasts. Am. J. Physiol. Renal. Physiol. 320, F17–F30. doi: 10.1152/ajprenal.00453.2020, PMID: PubMed DOI
Yan J., Thomson J. K., Zhao W., Wu X., Gao X., DeMarco D., et al. . (2018). The stress kinase JNK regulates gap junction Cx43 gene expression and promotes atrial fibrillation in the aged heart. J. Mol. Cell. Cardiol. 114, 105–115. doi: 10.1016/j.yjmcc.2017.11.006, PMID: PubMed DOI PMC
Yang L., Song M., Li Y.-L., Liu Y.-P., Liu C., Han L., et al. . (2019). L-carnitine inhibits the senescence-associated secretory phenotype of aging adipose tissue by JNK/p53 pathway. Biogerontology 20, 203–211. doi: 10.1007/s10522-018-9787-z PubMed DOI
Yang L., Wang Y., Zheng G., Li Z., Mei J. (2023). Resveratrol-loaded selenium/chitosan nano-flowers alleviate glucolipid metabolism disorder-associated cognitive impairment in Alzheimer's disease. Int. J. Biol. Macromol. 239:124316. doi: 10.1016/j.ijbiomac.2023.124316 PubMed DOI
Ye Y., Gaudy A., Thomas M., Reyes J., Burkhardt B., Horan G., et al. . (2022). Safety, pharmacokinetics, and pharmacodynamics of CC-90001 (BMS-986360), a c-Jun N-terminal kinase inhibitor, in phase 1 studies in healthy participants. Clin. Pharmacol. Drug Dev. 11, 1394–1404. doi: 10.1002/cpdd.1178, PMID: PubMed DOI PMC
Ye R. Z., Richard G., Gevry N., Tchernof A., Carpentier A. C. (2022). Fat cell size: measurement methods, pathophysiological origins, and relationships with metabolic dysregulations. Endocr. Rev. 43, 35–60. doi: 10.1210/endrev/bnab018, PMID: PubMed DOI PMC
Yin Y., Chen H., Wang Y., Zhang L., Wang X. (2021). Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J. Extracell. Vesicles 10:e12154. doi: 10.1002/jev2.12154, PMID: PubMed DOI PMC
Yin Y., Ma P., Wang S., Zhang Y., Han R., Huo C., et al. . (2022). The CRTC-CREB axis functions as a transcriptional sensor to protect against proteotoxic stress in Drosophila. Cell Death Dis. 13:688. doi: 10.1038/s41419-022-05122-y, PMID: PubMed DOI PMC
Yoon J. S., Kim E. S., Park B. B., Choi J. H., Won Y. W., Kim S., et al. . (2015). Anti-leukemic effect of sodium metaarsenite (KML001) in acute myeloid leukemia with breaking-down the resistance of cytosine arabinoside. Int. J. Oncol. 46, 1953–1962. doi: 10.3892/ijo.2015.2899, PMID: PubMed DOI
Yoshida Y., Matsunaga N., Nakao T., Hamamura K., Kondo H., Ide T., et al. . (2021). Alteration of circadian machinery in monocytes underlies chronic kidney disease-associated cardiac inflammation and fibrosis. Nat. Commun. 12:2783. doi: 10.1038/s41467-021-23050-x, PMID: PubMed DOI PMC
Yoshitane H., Honma S., Imamura K., Nakajima H., Nishide S., Ono D., et al. . (2012). JNK regulates the photic response of the mammalian circadian clock. EMBO Rep. 13, 455–461. doi: 10.1038/embor.2012.37, PMID: PubMed DOI PMC
Yousefzadeh M. J., Flores R. R., Zhu Y., Schmiechen Z. C., Brooks R. W., Trussoni C. E., et al. . (2021). An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105. doi: 10.1038/s41586-021-03547-7, PMID: PubMed DOI PMC
Yu J., Li S., Qi J., Chen Z., Wu Y., Guo J., et al. . (2019). Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis. 10:193. doi: 10.1038/s41419-019-1441-4, PMID: PubMed DOI PMC
Yu Y., Li Y., Zhou L., Yang G., Wang M., Hong Y. (2018). Cryptochrome 2 (CRY2) suppresses proliferation and migration and regulates clock gene network in osteosarcoma cells. Med. Sci. Monit. 24, 3856–3862. doi: 10.12659/MSM.908596, PMID: PubMed DOI PMC
Zhang X., Cao D., Xu L., Xu Y., Gao Z., Pan Y., et al. . (2023). Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. Cell Stem Cell 30, 378–395.e8. doi: 10.1016/j.stem.2023.03.005, PMID: PubMed DOI
Zhang M., Dong Z., Dong W., Zhou D., Ren X. (2022). Role of Takeda G protein-coupled receptor 5 in microvascular endothelial cell dysfunction in diabetic retinopathy (review). Exp. Ther. Med. 24, 1–10. doi: 10.3892/etm.2022.11610 PubMed DOI PMC
Zhang M., Li Y., Wang Y., Zhang C. (2019). Quercetin inhibition of myocardial fibrosis through regulating MAPK signaling pathway via ROS. Pak. J. Pharm. Sci. 32, 1355–1359. PubMed
Zhang S., Liu W., Wang P., Hu B., Lv X., Chen S., et al. . (2021). Activation of HSP70 impedes tert-butyl hydroperoxide (t-BHP)-induced apoptosis and senescence of human nucleus pulposus stem cells via inhibiting the JNK/c-Jun pathway. Mol. Cell. Biochem. 476, 1979–1994. doi: 10.1007/s11010-021-04052-1, PMID: PubMed DOI
Zhang P., Pronovost S. M., Marchetti M., Zhang C., Kang X., Kandelouei T., et al. . (2024). Inter-cell type interactions that control JNK signaling in the Drosophila intestine. Nat. Commun. 15:5493. doi: 10.1038/s41467-024-49786-w, PMID: PubMed DOI PMC
Zhao J., Warman G. R., Cheeseman J. F. (2018). Clock gene expression and locomotor activity predict death in the last days of life in Drosophila melanogaster. Sci. Rep. 8:11923. doi: 10.1038/s41598-018-30323-x, PMID: PubMed DOI PMC
Zhao Y., Wu L., Jin C., Lin J., Bi X., Shen Z., et al. . (2019). Advanced glycation end products upregulates the expression of connexin43 via ERK MAPK and PI3K/Akt pathways in human endothelial cells. Int. J. Clin. Exp. Med. 12, 1545–1553.
Zhao P., Yue Z., Nie L., Zhao Z., Wang Q., Chen J., et al. . (2021). Hyperglycaemia-associated macrophage pyroptosis accelerates periodontal inflamm-aging. J. Clin. Periodontol. 48, 1379–1392. doi: 10.1111/jcpe.13517, PMID: PubMed DOI
Zhdankina A. A., Tikhonov D. I., Logvinov S. V., Plotnikov M. B., Khlebnikov A. I., Kolosova N. G. (2023). Suppression of age-related macular degeneration-like pathology by c-Jun N-terminal kinase inhibitor IQ-1S. Biomedicines 11:395. doi: 10.3390/biomedicines11020395, PMID: PubMed DOI PMC
Zheng S. L., Zhang H., Liu R. H., Huang C. L., Li H. Y., Deng Z. Y., et al. . (2021). Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects?- new insights from a TNF-alpha-induced Caco-2 cell model. Food Res. Int. 139:109833. doi: 10.1016/j.foodres.2020.109833, PMID: PubMed DOI
Zhou Y., Li J., Wang C., Pan Z. (2022). Fumitremorgin C alleviates advanced glycation end products (AGE)-induced chondrocyte inflammation and collagen II and aggrecan degradation through sirtuin-1 (SIRT1)/nuclear factor (NF)-kappa B/mitogen-activated protein kinase (MAPK). Bioengineered 13, 3867–3876. doi: 10.1080/21655979.2021.2024387, PMID: PubMed DOI PMC
Zhou Y., Qi S., Meng X., Lin X., Duan N., Zhang Y., et al. . (2021). Deoxynivalenol photocatalytic detoxification products alleviate intestinal barrier damage and gut flora disorder in BLAB/c mice. Food Chem. Toxicol. 156:112510. doi: 10.1016/j.fct.2021.112510, PMID: PubMed DOI
Zhou Q., Wang M., Du Y., Zhang W., Bai M., Zhang Z., et al. . (2015). Inhibition of c-Jun N-terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice. Ann. Neurol. 77, 637–654. doi: 10.1002/ana.24361, PMID: PubMed DOI
Zhu Y., Liu Y., Escames G., Yang Z., Zhao H., Qian L., et al. . (2022). Deciphering clock genes as emerging targets against aging. Ageing Res. Rev. 81:101725. doi: 10.1016/j.arr.2022.101725, PMID: PubMed DOI