The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, Hepatic Cytochrome P450 Reductase Null (HRN™) mice and pure enzymes

. 2014 Dec 25 ; 16 (1) : 284-306. [epub] 20141225

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid25547492

Grantová podpora
14329 Cancer Research UK - United Kingdom
Wellcome Trust - United Kingdom

Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models.

Zobrazit více v PubMed

Stiborova M., Bieler C.A., Wiessler M., Frei E. The anticancer agent ellipticine on activation by cytochrome P450 forms covalent DNA adducts. Biochem. Pharmacol. 2001;62:1675–1684. doi: 10.1016/S0006-2952(01)00806-1. PubMed DOI

Stiborova M., Rupertova M., Schmeiser H.H., Frei E. Molecular mechanisms of antineoplastic action of an anticancer drug ellipticine. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2006;150:13–23. doi: 10.5507/bp.2006.002. PubMed DOI

Stiborova M., Rupertova M., Frei E. Cytochrome P450- and peroxidase-mediated oxidation of anticancer alkaloid ellipticine dictates its anti-tumor efficiency. Biochim. Biophys. Acta. 2011;1814:175–185. doi: 10.1016/j.bbapap.2010.05.016. PubMed DOI

Kizek R., Adam V., Hrabeta J., Eckschlager T., Smutny S., Burda J.V., Frei E., Stiborova M. Anthracyclines and ellipticines as DNA-damaging anticancer drugs: Recent advances. Pharmacol. Ther. 2012;133:26–39. doi: 10.1016/j.pharmthera.2011.07.006. PubMed DOI

Auclair C. Multimodal action of antitumor agents on DNA: The ellipticine series. Arch. Biochem. Biophys. 1987;259:1–14. doi: 10.1016/0003-9861(87)90463-2. PubMed DOI

Garbett N.C., Graves D.E. Extending nature’s leads: The anticancer agent ellipticine. Curr. Med. Chem. Anti-Cancer Agents. 2004;4:149–172. doi: 10.2174/1568011043482070. PubMed DOI

Kuo P.L., Hsu Y.L., Chang C.H., Lin C.C. The antiproliferative inhibition of ellipticine in human breast mda-mb-231 cancer cells is through cell cycle arrest and apoptosis induction. Anti-Cancer Drugs. 2005;16:789–795. doi: 10.1097/01.cad.0000171768.36317.93. PubMed DOI

Russell E.G., O’Sullivan E.C., Miller C.M., Stanicka J., McCarthy F.O., Cotter T.G. Ellipticine derivative induces potent cytostatic effect in acute myeloid leukaemia cells. Investig. New Drugs. 2014;32:1113–1122. doi: 10.1007/s10637-014-0140-3. PubMed DOI

Kim J.Y., Lee S.G., Chung J.Y., Kim Y.J., Park J.E., Koh H., Han M.S., Park Y.C., Yoo Y.H., Kim J.M. Ellipticine induces apoptosis in human endometrial cancer cells: The potential involvement of reactive oxygen species and mitogen-activated protein kinases. Toxicology. 2011;289:91–102. doi: 10.1016/j.tox.2011.07.014. PubMed DOI

Kuo P.L., Hsu Y.L., Chang C.H., Lin C.C. The mechanism of ellipticine-induced apoptosis and cell cycle arrest in human breast MCF-7 cancer cells. Cancer Lett. 2005;223:293–301. doi: 10.1016/j.canlet.2004.09.046. PubMed DOI

Ohashi M., Sugikawa E., Nakanishi N. Inhibition of p53 protein phosphorylation by 9-hydroxyellipticine: A possible anticancer mechanism. Jpn. J. Cancer Res. 1995;86:819–829. doi: 10.1111/j.1349-7006.1995.tb03091.x. PubMed DOI PMC

Shi L.M., Myers T.G., Fan Y., O’Conno R.P.M., Paull K.D., Friend S.H., Weinstein J.N. Mining the National Cancer Institute Anticancer Drug Discovery Database: Cluster analysis of ellipticine analogs with p53-inverse and central nervous system-selective patterns of activity. Mol. Pharmacol. 1998;53:241–251. PubMed

Kuo P.L., Kuo Y.C., Hsu Y.L., Cho C.Y., Lin C.C. Ellipticine induced apoptosis through p53-dependent pathway in human hepatocellular carcinoma HepG2 cells. Life Sci. 2006;78:2550–2557. PubMed

Martinkova E., Maglott A., Leger D.Y., Bonnet D., Stiborova M., Takeda K., Martin S., Dontenwill M. α5β1 integrin antagonists reduce chemotherapy-induced premature senescence and facilitate apoptosis in human glioblastoma cells. Int. J. Cancer. 2010;127:1240–1248. doi: 10.1002/ijc.25187. PubMed DOI

Sugikawa E., Hosoi T., Yazaki N., Gamanuma N., Nakanishi N., Ohashi M. Mutant p53 mediated induction of cell cycle arrest and apoptosis at G1 phase by 9-hydroxyellipticine. Anticancer Res. 1999;19:3099–3108. PubMed

Peng Y., Li C., Chen L., Sebti S., Chen J. Rescue of mutant p53 transcription function by ellipticine. Oncogene. 2003;22:4478–4487. doi: 10.1038/sj.onc.1206777. PubMed DOI

Savorani C., Manfé V., Biskup E., Gniadecki R. Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage. Leuk. Lymphoma. 2014;4:1–9. doi: 10.3109/10428194.2014.929673. PubMed DOI

Fang K., Chen S.P., Lin C.W., Cheng W.C., Huang H.T. Ellipticine-induced apoptosis depends on Akt translocation and signaling in lung epithelial cancer cells. Lung Cancer. 2009;63:227–234. doi: 10.1016/j.lungcan.2008.05.026. PubMed DOI

Wang F., Liu J., Robbins D., Morris K., Sit A., Liu Y.Y., Zhao Y. Mutant p53 exhibits trivial effects on mitochondrial functions which can be reactivated by ellipticine in lymphoma cells. Apoptosis. 2011;16:301–310. doi: 10.1007/s10495-010-0559-8. PubMed DOI PMC

Miller C.M., McCarthy F.O. Isolation, biological activity and synthesis of the natural product ellipticine and related pyridocarbazoles. RSC Adv. 2012;2:8883–8918. doi: 10.1039/c2ra20584j. DOI

Fritsche M., Haessler C., Brandner G. Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene. 1993;8:307–318. PubMed

Xu G.W., Mawji I.A., Macrae C.J., Koch C.A., Datti A., Wrana J.L., Dennis J.W., Schimmer A.D. A high-content chemical screen identifies ellipticine as a modulator of p53 nuclear localization. Apoptosis. 2008;13:413–422. doi: 10.1007/s10495-007-0175-4. PubMed DOI

Kohn K.W., Waring M.J., Glaubiger D., Friedman C.A. Intercalative binding of ellipticine to DNA. Cancer Res. 1975;35:71–76. PubMed

Patel N., Bergman J., Gräslund A. 1H-NMR studies of the interaction between a self-complementary deoxyoligonucleotide duplex and indolo[2,3-b]quinoxaline derivatives active against herpes virus. Eur. J. Biochem. 1991;197:597–604. PubMed

Chu Y., Hsu M.T. Ellipticine increases the superhelical density of intracellular SV40 DNA by intercalation. Nucleic Acids Res. 1992;20:4033–4038. doi: 10.1093/nar/20.15.4033. PubMed DOI PMC

Singh M.P., Hill G.C., Peoch D., Rayner B., Inabach J.L., Lown J.W. High-field NMR and restrained molecular modeling studies on a DNA heteroduplex containing a modified apurinic abasic site in the form of covalently linked 9-aminoellipticine. Biochemistry. 1994;33:10271–10285. doi: 10.1021/bi00200a007. PubMed DOI

Belehradek J., Jr., Fermandjian S. DNA-drug recognition and effects on topoisomerase II-mediated cytotoxicity. A three-mode binding model for ellipticine derivatives. J. Biol. Chem. 1991;266:1820–1829. PubMed

Froelich-Ammon S.J., Patchan M.W., Osheroff N., Thompson R.B. Topoisomerase II binds to ellipticine in the absence or presence of DNA. Characterization of enzyme-drug interactions by fluorescence spectroscopy. J. Biol. Chem. 1995;270:14998–5004. doi: 10.1074/jbc.270.25.14998. PubMed DOI

Andrews W.J., Panova T., Normand C., Gadal O., Tikhonova I.G., Panov K.I. Old drug, new target: Ellipticines selectively inhibit RNA polymerase I transcription. J. Biol. Chem. 2013;288:4567–4582. doi: 10.1074/jbc.M112.411611. PubMed DOI PMC

Ghosh S., Kar A., Chowdhury S., Dasgupta D. Ellipticine binds to a human telomere sequence: An additional mode of action as a putative anticancer agent? Biochemistry. 2013;52:4127–4137. PubMed

Stiborová M., Sejbal J., Borek-Dohalská L., Aimová D., Poljaková J., Forsterová K., Rupertová M., Wiesner J., Hudecek J., Wiessler M., et al. The anticancer drug ellipticine forms covalent DNA adducts, mediated by human cytochromes P450, through metabolism to 13-hydroxyellipticine and ellipticine N2-oxide. Cancer Res. 2004;64:8374–8380. doi: 10.1158/0008-5472.CAN-04-2202. PubMed DOI

Stiborová M., Poljaková J., Ryslavá H., Dracínský M., Eckschlager T., Frei E. Mammalian peroxidases activate anticancer drug ellipticine to intermediates forming deoxyguanosine adducts in DNA identical to those found in vivo and generated from 12-hydroxyellipticine and 13-hydroxyellipticine. Int. J. Cancer. 2007;120:243–251. doi: 10.1002/ijc.22247. PubMed DOI

Stiborová M., Rupertová M., Aimová D., Ryslavá H., Frei E. Formation and persistence of DNA adducts of anticancer drug ellipticine in rats. Toxicology. 2007;236:50–60. doi: 10.1016/j.tox.2007.03.026. PubMed DOI

Stiborová M., Indra R., Moserová M., Cerná V., Rupertová M., Martínek V., Eckschlager T., Kizek R., Frei E. Cytochrome b5 increases cytochrome P450 3A4-mediated activation of anticancer drug ellipticine to 13-hydroxyellipticine whose covalent binding to DNA is elevated by sulfotransferases and N,O-acetyltransferases. Chem. Res. Toxicol. 2012;25:1075–1085. doi: 10.1021/tx3000335. PubMed DOI

Kotrbová V., Mrázová B., Moserová M., Martínek V., Hodek P., Hudeček J., Frei E., Stiborová M. Cytochrome b5 shifts oxidation of the anticancer drug ellipticine by cytochromes P450 1A1 and 1A2 from its detoxication to activation, thereby modulating its pharmacological efficacy. Biochem. Pharmacol. 2011;82:669–680. doi: 10.1016/j.bcp.2011.06.003. PubMed DOI

Stiborova M., Frei E. Ellipticines as DNA-targeted chemotherapeutics. Curr. Med. Chem. 2014;21:575–591. doi: 10.2174/09298673113206660272. PubMed DOI

Stiborová M., Breuer A., Aimová D., Stiborová-Rupertová M., Wiessler M., Frei E. DNA adduct formation by the anticancer drug ellipticine in rats determined by 32P-postlabeling. Int. J. Cancer. 2003;107:885–890. doi: 10.1002/ijc.11511. PubMed DOI

Stiborová M., Stiborová-Rupertová M., Bořek-Dohalská L., Wiessler M., Frei E. Rat microsomes activating the anticancer drug ellipticine to species covalently binding to deoxyguanosine in DNA are a suitable model mimicking ellipticine bioactivation in humans. Chem. Res. Toxicol. 2003;16:38–47. doi: 10.1021/tx0200818. PubMed DOI

Stiborová M., Poljakova J., Martínková E., Ulrichová J., Šimánek V., Dvořák Z., Frei E. Ellipticine oxidation and DNA adduct formation in human hepatocytes is catalyzed by human cytochromes P450 and enhanced by cytochrome b5. Toxicology. 2012;302:233–241. doi: 10.1016/j.tox.2012.08.004. PubMed DOI

Kotrbová V., Aimová D., Březinová A., Janouchová K., Poljaková J., Hodek P., Frei E., Stiborová M. Cytochromes P450 reconstituted with NADPH:P450 reductase mimic the activating and detoxicating metabolism of the anticancer drug ellipticine in microsomes. Neuro Endocrinol. Lett. 2006;27(Suppl. 2):18–20. PubMed

Stiborova M., Poljakova J., Mrizova I., Borek-Dohalska L., Eckschlager T., Adam V., Kizek R., Frei E. Expression levels of enzymes metabolizing an anticancer drug ellipticine determined by electromigration assays influence its cytotoxicity to cancer cells—A comparative study. Int. J. Electrochem. Sci. 2014;9:5675–5689.

Poljaková J., Frei E., Gomez J.E., Aimová D., Eckschlager T., Hraběta J., Stiborová M. DNA adduct formation by the anticancer drug ellipticine in human leukemia HL-60 and CCRF-CEM cells. Cancer Lett. 2007;252:270–279. doi: 10.1016/j.canlet.2006.12.037. PubMed DOI

Poljaková J., Eckschlager T., Hraběta J., Hřebačková J., Smutný S., Frei E., Martínek V., Kizek R., Stiborová M. The mechanism of cytotoxicity and DNA adduct formation by the anticancer drug ellipticine in human neuroblastoma cells. Biochem. Pharmacol. 2009;77:1466–1479. doi: 10.1016/j.bcp.2009.01.021. PubMed DOI

Poljakova J., Hrebackova J., Dvořákova M., Moserova M., Eckschlager T., Hrabeta J., Göttlicherova M., Kope Jtkova B., Frei E., Kizek R., et al. Anticancer agent ellipticine combined with histone deacetylase inhibitors, valproic acid and trichostatin A, is an effective DNA damage strategy in human neuroblastoma. Neuro Endocrinol. Lett. 2011;32(Suppl. 1):101–116. PubMed

Poljaková J., Eckschlager T., Kizek R., Frei E., Stiborová M. Electrochemical determination of enzymes metabolizing ellipticine in thyroid cancer cells—A tool to explain the mechanism of ellipticine toxicity to these cells. Int. J. Electrochem. Sci. 2013;8:1573–1585.

Martinkova E., Dontenwill M., Frei E., Stiborová M. Cytotoxicity of and DNA adduct formation by ellipticine in human U87MG glioblastoma cancer cells. Neuro Endocrinol. Lett. 2009;30(Suppl. 1):60–66. PubMed

Poljaková J., Dračínský M., Frei E., Hudeček J., Stiborová M. The effect of pH on peroxidase-mediated oxidation of and DNA-adduct formation by ellipticine. Collect. Czech Chem. Commun. 2006;71:1169–1185. doi: 10.1135/cccc20061169. DOI

Stiborová M., Arlt V.M., Henderson C.J., Wolf C.R., Kotrbová V., Moserová M., Hudecek J., Phillips D.H., Frei E. Role of hepatic cytochromes P450 in bioactivation of the anticancer drug ellipticine: Studies with the hepatic NADPH:Cytochrome P450 reductase null mouse. Toxicol. Appl. Pharmacol. 2008;226:318–327. doi: 10.1016/j.taap.2007.09.017. PubMed DOI

Stiborová M., Moserová M., Mrázová B., Kotrbová V., Frei E. Role of cytochromes P450 and peroxidases in metabolism of the anticancer drug ellipticine: Additional evidence of their contribution to ellipticine activation in rat liver, lung and kidney. Neuro Endocrinol. Lett. 2010;31(Suppl. 2):26–35. PubMed

Stiborová M., Eckschlager T., Poljaková J., Hraběta J., Adam V., Kizek R., Frei E. The synergistic effects of DNA-targeted chemotherapeutics and histone deacetylase inhibitors as therapeutic strategies for cancer treatment. Curr. Med. Chem. 2012;19:4218–4238. doi: 10.2174/092986712802884286. PubMed DOI

Vranová I., Moserová M., Hodek P., Kizek R., Frei E., Stiborová M. The anticancer drug ellipticine induces cytochromes P450 1A1, 1A2 and 3A, cytochrome b5 and NADPH:Cytochrome P450 in rat liver, kidney and lung. Int. J. Electrochem. Sci. 2013;8:1586–1597.

Chadwick M., Silveira D.M., Platz B.R., Hayes D. Comparative physiological disposition of ellipticine in several animal species after intravenous administration. Drug Metab. Dispos. 1978;6:528–541. PubMed

Branfam A.R., Bruni R.J., Reihold V.N., Silveira D.M., Chadwick M., Yesair D.W. Characterization of metabolites of ellipticine in rat bile. Drug Metab. Dispos. 1978;6:542–548. PubMed

Ismail M.A., Sanders K.J., Fennell G.C., Latham H.C., Wormell P., Rodger A. Spectroscopic studies of 9-hydroxyellipticine binding to DNA. Biopolymers. 1998;46:127–143. doi: 10.1002/(SICI)1097-0282(199809)46:3<127::AID-BIP1>3.0.CO;2-N. PubMed DOI

Fossé P., René B., le Bret M., Paoletti C., Saucier J.M. Sequence requirements for mammalian topoisomerase II mediated DNA cleavage stimulated by an ellipticine derivative. Nucleic Acids Res. 1991;19:2861–2868. doi: 10.1093/nar/19.11.2861. PubMed DOI PMC

Fossé P., René B., Charra M., Paoletti C., Saucier J.M. Stimulation of topoisomerase II-mediated DNA cleavage by ellipticine derivatives: Structure-activity relationships. Mol. Pharmacol. 1992;42:590–595. PubMed

Hofle G., Glase N., Leibold T., Sefkow M. Epothilone A–D and their thiazole-modified analogs as novel anticancer agents. Pure Appl. Chem. 1999;71:2019–2024. doi: 10.1351/pac199971112019. DOI

Moserova M., Kotrbova V., Rupertova M., Naiman K., Hudecek J., Hodek P., Frei E., Stiborova M. Isolation and partial characterization of the adduct formed by 13-hydroxyellipticine with deoxyguanosine in DNA. Neuro Endocrinol. Lett. 2008;29:728–732. PubMed

Martínek V., Sklenár J., Dracínsky M., Sulc M., Hofbauerová K., Bezouska K., Frei E., Stiborová M. Glycosylation protects proteins against free radicals generated from toxic xenobiotics. Toxicol. Sci. 2010;117:59–74. PubMed

Stiborová M., Borek-Dohalská L., Aimová D., Kotrbová V., Kukacková K., Janouchová K., Rupertová M., Ryslavá H., Hudecek J., Frei E. Oxidation pattern of the anticancer drug ellipticine by hepatic microsomes—Similarity between human and rat systems. Gen. Physiol. Biophys. 2006;25:245–261. PubMed

Stiborova M., Cerna V., Moserova M., Arlt V.M., Frei E. The effect of benzo[a]pyrene on metabolic activation of anticancer drug ellipticine in mice. Neuro Endocrinol. Lett. 2013;34(Suppl. 2):43–54. PubMed

Henderson C.J., Otto D.M., Carrie D., Magnuson M.A., McLaren A.W., Rosewell I., Wolf C.R. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J. Biol. Chem. 2003;278:13480–13486. doi: 10.1074/jbc.M212087200. PubMed DOI

Arlt V.M., Stiborova M., Henderson C.J., Osborne M.R., Bieler C.A., Frei E., Martinek V., Sopko B., Wolf C.R., Schmeiser H.H., et al. Environmental pollutant and potent mutagen 3-nitrobenzanthrone forms DNA adducts after reduction by NAD(P)H:quinone oxidoreductase and conjugation by acetyltransferases and sulfotransferases in human hepatic cytosols. Cancer Res. 2005;65:2644–2652. doi: 10.1158/0008-5472.CAN-04-3544. PubMed DOI

Arlt V.M., Henderson C.J., Wolf C.R., Schmeiser H.H., Phillips D.H., Stiborova M. Bioactivation of 3-aminobenzanthrone, a human metabolite of the environmental pollutant 3-nitrobenzanthrone: Evidence for DNA adduct formation mediated by cytochrome P450 enzymes and peroxidases. Cancer Lett. 2006;234:220–2231. doi: 10.1016/j.canlet.2005.03.035. PubMed DOI

Arlt V.M., Stiborová M., Henderson C.J., Thiemann M., Frei E., Aimová D., Singh R., Gamboa da Costa G., Schmitz O.J., Farmer P.B., et al. Metabolic activation of benzo[a]pyrene in vitro by hepatic cytochrome P450 contrasts with detoxification in vivo: Experiments with hepatic cytochrome P450 reductase null mice. Carcinogenesis. 2008;29:656–665. doi: 10.1093/carcin/bgn002. PubMed DOI

Arlt V.M., Poirier M.C., Sykes S.E., John K., Moserova M., Stiborova M., Wolf C.R., Henderson C.J., Phillips D.H. Exposure to benzo[a]pyrene of Hepatic Cytochrome P450 Reductase Null (HRN) and P450 Reductase Conditional Null (RCN) mice: Detection of benzo[a]pyrene diol epoxide-DNA adducts by immunohistochemistry and 32P-postlabelling. Toxicol. Lett. 2012;213:160–166. doi: 10.1016/j.toxlet.2012.06.016. PubMed DOI PMC

Pass G.J., Carrie D., Boylan M., Lorimore S., Wright E., Houston B., Henderson C.J., Wolf C.R. Role of hepatic cytochrome P450s in the pharmacokinetics and toxicity of cyclophosphamide: Studies with the hepatic cytochrome P450 reductase null mouse. Cancer Res. 2005;65:4211–4217. doi: 10.1158/0008-5472.CAN-04-4103. PubMed DOI

Xiao Y., Ge M., Xue X., Wang H., Wu X., Li L., Liu L., Qi X., Zhang Y., Li Y., et al. Detoxication role of hepatic cytochrome P450s in the kidney toxicity induced by aristolochic acid. Kidney Int. 2008;73:1231–1239. doi: 10.1038/ki.2008.103. PubMed DOI

Levová K., Moserová M., Kotrbová V., Šulc M., Henderson C.J., Wolf C.R., Phillips D.H., Frei E., Schmeiser H.H., Mareš J., et al. Role of cytochromes P450 1A1/2 in detoxication and activation of carcinogenic aristolochic acid I: Studies with the hepatic NADPH:cytochrome P450 reductase null (HRN) mouse model. Toxicol. Sci. 2011;121:43–56. doi: 10.1093/toxsci/kfr050. PubMed DOI

Eling T.E., Thompson D.C., Foureman G.L., Curtis J.F., Hughes M.F. Prostaglandin H synthase and xenobiotic oxidation. Annu. Rev. Pharmacol. Toxicol. 1990;30:1–45. doi: 10.1146/annurev.pa.30.040190.000245. PubMed DOI

Eling T.E., Curtis J.F. Xenobiotic metabolism by prostaglandin H synthase. Pharm. Ther. 1992;53:261–273. doi: 10.1016/0163-7258(92)90012-O. PubMed DOI

Stiborova M., Frei E., Hodek P., Wiessler M., Schmeiser H.H. Human hepatic and renal microsomes, cytochromes P450 1A1/2, NADPH:cytochrome P450 reductase and prostaglandin H synthase mediate the formation of aristolochic acid-DNA adducts found in patients with urothelial cancer. Int. J. Cancer. 2005;113:189–197. doi: 10.1002/ijc.20564. PubMed DOI

Downie D., McFadyen M.C., Rooney P.H., Cruickshank M.E., Parkin D.E., Miller I.D., Telfer C., Melvin W.T., Murray G.I. Profiling cytochrome P450 expression in ovarian cancer: Identification of prognostic markers. Clin. Cancer Res. 2005;11:7369–7735. doi: 10.1158/1078-0432.CCR-05-0466. PubMed DOI

Saarikoski T., Rivera S.P., Hankinson O., Husgafvel-Pursiainen K. CYP2S1: A short review. Toxicol. Appl. Pharmacol. 2005;207:62–69. doi: 10.1016/j.taap.2004.12.027. PubMed DOI

Bui P.H., Hankinson O. Functional characterization of human cytochrome P450 2S1 using a synthetic gene-expressed protein in Escherichia coli. Mol. Pharmacol. 2009;76:1031–1043. doi: 10.1124/mol.109.057752. PubMed DOI PMC

Bui P.H., Hsu E.L., Hankinson O. Fatty acid hydroperoxides support cytochrome P450 2S1-mediated bioactivation of benzo[a]pyrene-7,8-dihydrodiol. Mol. Pharmacol. 2009;76:1044–1052. doi: 10.1124/mol.109.057760. PubMed DOI PMC

Mrizová I., Moserová M., Milichovsky J., Šulc M., Guengerich F.P., Stiborová M. Heterologous expression of cytochrome P450 2S1 in Escherichia coli. Interdisc. Toxicol. 2014;7(Suppl. 1):66.

Stiborova M., Moserova M., Černá V., Indra R., Dračínský M., Šulc M., Henderson C.J., Wolf C.R., Schmeiser H.H., Phillips D.H., et al. Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene-DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions. Toxicology. 2014;318:1–12. doi: 10.1016/j.tox.2014.02.002. PubMed DOI

Rendic S., DiCarlo F.J. Human cytochrome P450 enzymes: A status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab. Rev. 1997;29:413–480. doi: 10.3109/03602539709037591. PubMed DOI

Ueng Y.-F., Kuwabara T., Chun Y.-J., Guengerich F.P. Cooperativity in oxidation catalyzed by cytochrome P450 3A4. Biochemistry. 1997;36:370–381. doi: 10.1021/bi962359z. PubMed DOI

Patterson L.H., McKeown S.R., Robson T., Gallagher R., Raleigh S.M., Orr S. Antitumor prodrug development using cytochrome P450 (CYP) mediated activation. Anti-Cancer Drug Des. 1999;14:473–486. PubMed

Murray G.I., Melvin W.T., Burke M. Cytochrome P450 expression in tumors. J. Pathol. 1995;176:323–324. PubMed

El-Rayes B.F., Ali S., Heilbrun L.K., Lababidi S., Bouwman S., Vischer D., Philip P.A. Cytochrome P450 and glutathione transferase expression in human breast cancer. Clin. Cancer Res. 2003;9:1705–1709. PubMed

Godschalk R.W.L., Moonen E.J.C., Schilderman P.A.E.L., Broekmans W.M.R., Kleinjans J.C.S., van Schooten F.J. Exposure-route-dependent DNA adduct formation by polycyclic aromatic hydrocarbons. Carcinogenesis. 2000;21:87–92. PubMed

Poirier M.C. Chemical-induced DNA damage and human cancer risk. Nat. Rev. 2004;4:630–637. doi: 10.1038/nrc1410. PubMed DOI

Randerath K., Haglund R.E., Phillips D.H., Reddy M.V. 32P-post-labelling analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other naturally-occurring alkenylbenzenes. I. Adult female CD-1 mice. Carcinogenesis. 1984;5:1613–1622. doi: 10.1093/carcin/5.12.1613. PubMed DOI

Ross J.A., Nelson G.B., Wilson K.H., Rabinowitz J.R., Galati A., Stoner G.D., Nesnow S., Mass M.J. Adenomas induced by polycyclic aromatic hydrocarbons in strain A/J mouse lung correlate with time-integrated DNA adduct levels. Cancer Res. 1995;55:1039–1044. PubMed

Smith B.A., Fullerton N.F., Heflich R.H., Beland F.A. DNA adduct formation and T-lymphocyte mutation induction in F344 rats implanted with tumorigenic doses of 1,6-dinitropyrene. Cancer Res. 1995;55:2316–2324. PubMed

Yamazaki H., Gillam E.M., Dong M.S., Johnson W.W., Guengerich F.P., Shimada T. Reconstitution of recombinant cytochrome P450 2C10(2C9) and comparison with cytochrome P450 3A4 and other forms: Effects of cytochrome P450–P450 and cytochrome P450–b5 interactions. Arch. Biochem. Biophys. 1997;342:329–337. doi: 10.1006/abbi.1997.0125. PubMed DOI

Yamazaki H., Shimada T., Martin M.V., Guengerich F.P. Stimulation of cytochrome P450 reactions by apo-cytochrome b5: Evidence against transfer of heme from cytochrome P450 3A4 to apo-cytochrome b5 or heme oxygenase. J. Biol. Chem. 2001;276:30885–30891. doi: 10.1074/jbc.M105011200. PubMed DOI

Schenkman J.B., Jansson I. The many roles of cytochrome b5. Pharmacol. Ther. 2003;97:139–152. doi: 10.1016/S0163-7258(02)00327-3. PubMed DOI

Zhang H., Myshkin E., Waskell L. Role of cytochrome b5 in catalysis by cytochrome P450 2B4. Biochem. Biophys. Res. Commun. 2005;338:499–506. doi: 10.1016/j.bbrc.2005.09.022. PubMed DOI

Zhang H., Im S.C., Waskell L. Cytochrome b5 increases the rate of product formation by cytochrome P450 2B4 and competes with cytochrome P450 reductase for a binding site on cytochrome P450 2B4. J. Biol. Chem. 2007;282:29766–29776. doi: 10.1074/jbc.M703845200. PubMed DOI

Kotrbová V., Aimová D., Ingr M., Borek-Dohalská L., Martínek V., Stiborová M. Preparation of a biologically active apo-cytochrome b5 via heterologous expression in Escherichia coli. Protein Expr. Purif. 2009;66:203–209. doi: 10.1016/j.pep.2009.03.011. PubMed DOI

Rendic S., Guengerich F.P. Contributions of human enzymes in carcinogen metabolism. Chem. Res. Toxicol. 2012;25:1316–1383. doi: 10.1021/tx300132k. PubMed DOI PMC

Aimová D., Svobodová L., Kotrbová V., Mrázová B., Hodek P., Hudeček J., Václavíková R., Frei E., Stiborová M. The anticancer drug ellipticine is a potent inducer of rat cytochromes P450 1A1 and 1A2, thereby modulating its own metabolism. Drug Metab. Dispos. 2007;35:1926–1934. doi: 10.1124/dmd.107.016048. PubMed DOI

Finn R.D., McLaughlin L.A., Ronseaux S., Rosewell I., Houston J.B., Henderson C.J., Wolf C.R. Defining the in vivo role for cytochrome b5 in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b5. J. Biol. Chem. 2008;283:31385–31393. doi: 10.1074/jbc.M803496200. PubMed DOI PMC

Henderson C.J., McLaughlin L.A., Wolf C.R. Evidence that cytochrome b5 and cytochrome b5 reductase can act as sole electron donors to the hepatic cytochrome P450 system. Mol. Pharmacol. 2013;83:1209–1217. doi: 10.1124/mol.112.084616. PubMed DOI

Ma J., Waxman D.J. Collaboration between hepatic and intratumoral prodrug activation in a P450 prodrug-activation gene therapy model for cancer treatment. Mol. Cancer Ther. 2007;6:2879–2890. doi: 10.1158/1535-7163.MCT-07-0297. PubMed DOI PMC

Lu H., Chen C.S., Waxman D.J. Potentiation of methoxymorpholinyl doxorubicin antitumor activity by P450 3A4 gene transfer. Cancer Gene Ther. 2009;16:393–404. doi: 10.1038/cgt.2008.93. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...