Comparative Analysis of Genetic Determinants Encoding Cadmium, Arsenic, and Benzalkonium Chloride Resistance in Listeria monocytogenes of Human, Food, and Environmental Origin

. 2020 ; 11 () : 599882. [epub] 20210114

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33519740

Environmental adaptation of Listeria monocytogenes is a complex process involving various mechanisms that can contribute to their survival in the environment, further spreading throughout the food chain and the development of listeriosis. The aim of this study was to analyze whole-genome sequencing data in a set of 270 strains of L. monocytogenes derived from human listeriosis cases and food and environmental sources in order to compare the prevalence and type of genetic determinants encoding cadmium, arsenic, and benzalkonium chloride resistance. Most of the detected genes of cadmium (27.8%), arsenic (15.6%), and benzalkonium chloride (7.0%) resistance were located on mobile genetic elements, even in phylogenetically distant lineages I and II, which indicates the possibility of their horizontal spread. Although no differences were found in the prevalence of these genes between human and food strains, they have been detected sporadically in strains from the environment. Regarding cadmium resistance genes, cadA1C1_Tn5422 predominated, especially in clonal complexes (CCs) 121, 8, and 3 strains. At the same time, qacH_Tn6188-encoding benzalkonium chloride resistance was most frequently detected in the genome of CC121 strains. Genes encoding arsenic resistance were detected mainly in strains CC2 (located on the chromosomal island LGI2) and CC9 (carried on Tn554). The results indicated a relationship between the spread of genes encoding resistance to cadmium, arsenic, and benzalkonium chloride in certain serotypes and CCs and showed the need for a more extensive study of L. monocytogenes strains to better understand their ability to adapt to the food production environment.

Zobrazit více v PubMed

Carattoli A., Zankari E., García-Fernández A., Voldby Larsen M., Lund O., Villa L., et al. (2014). In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58 3895–3903. 10.1128/AAC.02412-14 PubMed DOI PMC

Carpentier B., Cerf O. (2011). Review-Persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 145 1–8. 10.1016/j.ijfoodmicro.2011.01.005 PubMed DOI

Doležalová Weissmannová H., Pavlovský J. (2017). Indices of soil contamination by heavy metals - methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 189:616. 10.1007/s10661-017-6340-5 PubMed DOI

Elhanafi D., Dutta V., Kathariou S. (2010). Genetic characterization of plasmid-associated benzalkonium chloride resistance determinants in a Listeria monocytogenes strain from the 1998-1999 outbreak. Appl. Environ. Microbiol. 76 8231–8238. 10.1128/AEM.02056-10 PubMed DOI PMC

Gray M. J., Freitag N. E., Boor K. J. (2006). How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect. Immun. 74 2505–2512. 10.1128/IAI.74.5.2505-2512.2006 PubMed DOI PMC

Harvey J., Gilmour A. (2001). Characterization of recurrent and sporadic Listeria monocytogenes isolates from raw milk and nondairy foods by pulsed-field gel electrophoresis, monocin typing, plasmid profiling, and cadmium and antibiotic resistance determination. Appl. Environ. Microbiol. 67 840–847. 10.1128/AEM.67.2.840-847.2001 PubMed DOI PMC

Hingston P., Brenner T., Hansen L. T., Wang S. (2019). Comparative analysis of Listeria monocytogenes plasmids and expression levels of plasmid-encoded genes during growth under salt and acid stress conditions. Toxins 11:426. 10.3390/toxins11070426 PubMed DOI PMC

Hurley D., Luque-Sastre L., Parker C. T., Huynh S., Eshwar A. K., Nguyen S. V., et al. (2019). Whole-genome sequencing-based characterization of 100 Listeria monocytogenes isolates collected from food processing environments over a four-year period. mSphere 4:e00252-19. 10.1128/mSphere.00252-19 PubMed DOI PMC

Jiang X., Yu T., Xu Y., Wang H., Korkeala H., Shi L. (2019). MdrL, a major facilitator superfamily efflux pump of Listeria monocytogenes involved in tolerance to benzalkonium chloride. Appl. Microbiol. Biotechnol. 103 1339–1350. 10.1007/s00253-018-9551-y PubMed DOI

Katharios-Lanwermeyer S., Rakic-Martinez M., Elhanafi D., Ratani S., Tiedje J. M., Kathariou S. (2012). Coselection of cadmium and benzalkonium chloride resistance in conjugative transfers from nonpathogenic Listeria spp. to other Listeriae. Appl. Environ. Microbiol. 78 7549–7556. 10.1128/AEM.02245-12 PubMed DOI PMC

Korsak D., Chmielowska C., Szuplewska M., Bartosik D. (2019). Prevalence of plasmid-borne benzalkonium chloride resistance cassette bcrABC and cadmium resistance cadA genes in nonpathogenic Listeria spp. isolated from food and food-processing environments. Int. J. Food Microbiol. 290 247–253. 10.1016/j.ijfoodmicro.2018.10.019 PubMed DOI

Koudelka Š, Gelbíčová T., Procházková M., Karpíšková R. (2018). Lineage and serotype identification of Listeria monocytogenes by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Czech J. Food Sci. 36 452–458. 10.17221/87/2018-CJFS DOI

Kovacevic J., Ziegler J., Wałecka-Zacharska E., Reimer A., Kitts D. D., Gilmour M. W. (2015). Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Appl. Environ. Microbiol. 82 939–953. 10.1128/AEM.03741-15 PubMed DOI PMC

Kremer P. H. C., Lees J. A., Koopmans M. M., Ferwerda B., Arends A. W. M., Feller M. M., et al. (2017). Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis. Clin. Microbiol. Infect. 23 265.e1–265.e7. 10.1016/j.cmi.2016.12.008 PubMed DOI PMC

Kropac A. C., Eshwar A. K., Stephan R., Tasara T. (2019). New insights on the role of the pLMST6 plasmid in Listeria monocytogenes biocide tolerance and virulence. Front. Microbiol. 10:1538. 10.3389/fmicb.2019.01538 PubMed DOI PMC

Kuenne C., Billion A., Mraheil M. A., Strittmatter A., Daniel R., Goesmann A., et al. (2013). Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome. BMC Genomics 14:47. 10.1186/1471-2164-14-47 PubMed DOI PMC

Lee S., Rakic-Martinez M., Graves L. M., Ward T. J., Siletzky R. M., Kathariou S. (2013). Genetic determinants for cadmium and arsenic resistance among Listeria monocytogenes serotype 4b isolates from sporadic human listeriosis patients. Appl. Environ. Microbiol. 79 2471–2476. 10.1128/AEM.03551-12 PubMed DOI PMC

Lee S., Ward T. J., Jima D. D., Parsons C., Kathariou S. (2017). The arsenic resistance-associated Listeria genomic island LGI2 exhibits sequence and integration site diversity and a propensity for three Listeria monocytogenes clones with enhanced virulence. Appl. Environ. Microbiol. 83:e01189-17. 10.1128/AEM.01189-17 PubMed DOI PMC

Maury M. M., Bracq-Dieye H., Huang L., Vales G., Lavina M., Thouvenot P., et al. (2019). Hypervirulent Listeria monocytogenes clones’ adaption to mammalian gut accounts for their association with dairy products. Nat. Commun. 10:2488. 10.1038/s41467-019-10380-0 PubMed DOI PMC

McLauchlin J., Hampton M. D., Shah S., Threlfall E. J., Wieneke A. A., Curtis G. D. W. (1997). Subtyping of Listeria monocytogenes on the basis of plasmid profiles and arsenic and cadmium susceptibility. J. Appl. Microbiol. 83 381–388. 10.1046/j.1365-2672.1997.00238.x PubMed DOI

Meier A. B., Guldimann C., Markkula A., Pöntinen A., Korkeala H., Tasara T. (2017). Comparative phenotypic and genotypic analysis of Swiss and Finnish Listeria monocytogenes isolates with respect to benzalkonium chloride resistance. Front. Microbiol. 8:397. 10.3389/fmicb.2017.00397 PubMed DOI PMC

Mullapudi S., Siletzky R. M., Kathariou S. (2008). Heavy-metal and benzalkonium chloride resistance of Listeria monocytogenes isolates from the environment of turkey-processing plants. Appl. Environ. Microbiol. 74 1464–1468. 10.1128/AEM.02426-07 PubMed DOI PMC

Müller A., Rychli K., Muhterem-Uyar M., Zaiser A., Stessl B., Guinane C. M., et al. (2013). Tn6188 - a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLoS One 8:e76835. 10.1371/journal.pone.0076835 PubMed DOI PMC

Okonechnikov K., Golosova O., Fursov M. The UGENE Team (2012). Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28 1166–1167. 10.1093/bioinformatics/bts091 PubMed DOI

Painset A., Björkman J. T., Kiil K., Guillier L., Mariet J. F., Félix B., et al. (2019). LiSEQ - whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microb. Genom. 5:e000257. 10.1099/mgen.0.000257 PubMed DOI PMC

Palma F., Brauge T., Radomski N., Mallet L., Felten A., Mistou M. Y., et al. (2020). Dynamics of mobile genetic elements of Listeria monocytogenes persisting in ready-to-eat seafood processing plants in France. BMC Genomics 21:130 10.1186/s12864-020-6544-x PubMed DOI PMC

Parsons C., Lee S., Kathariou S. (2019). Heavy metal resistance determinants of the foodborne pathogen Listeria monocytogenes. Genes. 10:11. 10.3390/genes10010011 PubMed DOI PMC

Parsons C., Lee S., Kathariou S. (2020). Dissemination and conservation of cadmium and arsenic resistance determinants in Listeria and other gram-positive bacteria. Mol. Microbiol. 113 560–569. 10.1111/mmi.14470 PubMed DOI

Pasquali F., Palma F., Guillier L., Lucchi A., De Cesare A., Manfreda G. (2018). Listeria monocytogenes sequence types 121 and 14 repeatedly isolated within one year of sampling in a rabbit meat processing plant: persistence and ecophysiology. Front. Microbiol. 9:596. 10.3389/fmicb.2018.00596 PubMed DOI PMC

Pirone-Davies C., Chen Y., Pightling A., Ryan G., Wang Y., Yao K., et al. (2018). Genes significantly associated with lineage II food isolates of Listeria monocytogenes. BMC Genomics 19:708. 10.1186/s12864-018-5074-2 PubMed DOI PMC

Pombinho R., Camejo A., Vieira A., Reis O., Carvalho F., Almeida M. T., et al. (2017). Listeria monocytogenes CadC regulates cadmium efflux and fine-tunes lipoprotein localization to escape the host immune response and promote infection. J. Infect. Dis. 215 1468–1479. 10.1093/infdis/jix118 PubMed DOI

Ratani S. S., Siletzky R. M., Dutta V., Yildirim S., Osborne J. A., Lin W., et al. (2012). Heavy metal and disinfectant resistance of Listeria monocytogenes from foods and food processing plants. Appl. Environ. Microbiol. 78 6938–6945. 10.1128/AEM.01553-12 PubMed DOI PMC

Tomáštíková Z., Gelbíčová T., Karpíšková R. (2019). Population structure of Listeria monocytogenes isolated from human listeriosis cases and from ready-to-eat foods in the Czech Republic. J. Food Nut. Res. 58 99–106.

Xu D., Li Y., Zahid M. S. H., Yamasaki S., Shi L., Li J. R., et al. (2014). Benzalkonium chloride and heavy-metal tolerance in Listeria monocytogenes from retail foods. Int. J. Food Microbiol. 190 24–30. 10.1016/j.ijfoodmicro.2014.08.017 PubMed DOI

Zhang H., Zhou Y., Bao H., Zhang L., Wang R., Zhou X. (2015). Plasmid-borne cadmium resistant determinants are associated with the susceptibility of Listeria monocytogenes to bacteriophage. Microbiol. Res. 172 1–6. 10.1016/j.micres.2015.01.008 PubMed DOI

Zhen H., Jia L., Huang C., Qiao Y., Li J., Li H., et al. (2020). Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. Environ. Pollut. 263:114552. 10.1016/j.envpol.2020.114552 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...