In Vitro Metabolic Transformation of Pharmaceuticals by Hepatic S9 Fractions from Common Carp (Cyprinus carpio)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-15802S
Grantová Agentura České Republiky
"CENAKVA" "LM2018099"
MINISTRY OF EDUCATION, YOUTH, AND SPORTS OF THE CZECH REPUBLIC
PubMed
32531944
PubMed Central
PMC7321103
DOI
10.3390/molecules25112690
PII: molecules25112690
Knihovny.cz E-zdroje
- Klíčová slova
- citalopram, cytochrome P450, environmental toxicology, metabolite formation, metoprolol, sertraline, venlafaxine,
- MeSH
- citalopram metabolismus MeSH
- cytochrom P-450 CYP1A1 metabolismus MeSH
- jaterní mikrozomy metabolismus MeSH
- kapři MeSH
- léčivé přípravky metabolismus MeSH
- metoprolol metabolismus MeSH
- ovce MeSH
- sertralin metabolismus MeSH
- techniky in vitro MeSH
- venlafaxin hydrochlorid metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- citalopram MeSH
- cytochrom P-450 CYP1A1 MeSH
- léčivé přípravky MeSH
- metoprolol MeSH
- sertralin MeSH
- venlafaxin hydrochlorid MeSH
Water from wastewater treatment plants contains concentrations of pharmaceutically active compounds as high as micrograms per liter, which can adversely affect fish health and behavior, and contaminate the food chain. Here, we tested the ability of the common carp hepatic S9 fraction to produce the main metabolites from citalopram, metoprolol, sertraline, and venlafaxine. Metabolism in fish S9 fractions was compared to that in sheep. The metabolism of citalopram was further studied in fish. Our results suggest a large difference in the rate of metabolites formation between fish and sheep. Fish hepatic S9 fractions do not show an ability to form metabolites from venlafaxine, which was also the case for sheep. Citalopram, metoprolol, and sertraline were metabolized by both fish and sheep S9. Citalopram showed concentration-dependent N-desmethylcitalopram formation with Vmax = 1781 pmol/min/mg and Km = 29.7 μM. The presence of ellipticine, a specific CYP1A inhibitor, in the incubations reduced the formation of N-desmethylcitalopram by 30-100% depending on the applied concentration. These findings suggest that CYP1A is the major enzyme contributing to the formation of N-desmethylcitalopram. In summary, the results from the present in vitro study suggest that common carp can form the major metabolites of citalopram, metoprolol, and sertraline.
Zobrazit více v PubMed
Stroski K.M., Luong K.H., Challis J.K., Chaves-Barquero L.G., Hanson M.L., Wong C.S. Wastewater sources of per- and polyfluorinated alkyl substances (PFAS) and pharmaceuticals in four Canadian Arctic communities. Sci. Total Environ. 2020;708:134494. doi: 10.1016/j.scitotenv.2019.134494. PubMed DOI
Tröger R., Köhler S.J., Franke V., Bergstedt O., Wiberg K. A case study of organic micropollutants in a major Swedish water source – Removal efficiency in seven drinking water treatment plants and influence of operational age of granulated active carbon filters. Sci. Total Environ. 2020;706:135680. doi: 10.1016/j.scitotenv.2019.135680. PubMed DOI
Batt A.L., Kincaid T.M., Kostich M.S., Lazorchak J.M., Olsen A.R. Evaluating the extent of pharmaceuticals in surface waters of the United States using a National-scale Rivers and Streams Assessment survey. Environ. Toxicol. Chem. 2016;35:874–881. doi: 10.1002/etc.3161. PubMed DOI
Petrie B., Barden R., Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015;72:3–27. doi: 10.1016/j.watres.2014.08.053. PubMed DOI
Du S.N.N., Choi J.A., McCallum E.S., McLean A.R., Borowiec B.G., Balshine S., Scott G.R. Metabolic implications of exposure to wastewater effluent in bluegill sunfish. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2019;224:10. doi: 10.1016/j.cbpc.2019.108562. PubMed DOI
McCallum E.S., Nikel K.E., Mehdi H., Du S.N.N., Bowman J.E., Midwood J.D., Kidd K.A., Scott G.R., Balshine S. Municipal wastewater effluent affects fish communities: A multi-year study involving two wastewater treatment plants. Environ. Pollut. 2019;252:1730–1741. doi: 10.1016/j.envpol.2019.06.075. PubMed DOI
Simmons D.B.D., McCallum E.S., Balshine S., Chandramouli B., Cosgrove J., Sherry J.P. Reduced anxiety is associated with the accumulation of six serotonin reuptake inhibitors in wastewater treatment effluent exposed goldfish Carassius Auratus. Sci. Rep. 2017;7:11. doi: 10.1038/s41598-017-15989-z. PubMed DOI PMC
Brooks B.W., Chambliss C.K., Stanley J.K., Ramirez A., Banks K.E., Johnson R.D., Lewis R.J. Determination of select antidepressants in fish from an effluent-dominated stream. Environ. Toxicol. Chem. 2005;24:464–469. doi: 10.1897/04-081R.1. PubMed DOI
Huerta B., Rodriguez-Mozaz S., Lazorchak J., Barcelo D., Batt A., Wathen J., Stahl L. Presence of pharmaceuticals in fish collected from urban rivers in the U.S. EPA 2008–2009 National Rivers and Streams Assessment. Sci. Total Environ. 2018;634:542–549. doi: 10.1016/j.scitotenv.2018.03.387. PubMed DOI PMC
Giang P.T., Burkina V., Sakalli S., Schmidt-Posthaus H., Rasmussen M.K., Randak T., Grabic R., Grabicova K., Fedorova G., Koba O., et al. Effects of multi-component mixtures from sewage treatment plant effluent on common carp (Cyprinus carpio) under fully realistic condition. J. Environ. Manag. 2019;63:466–484. doi: 10.1007/s00267-017-0964-7. PubMed DOI
Sakalli S., Giang P.T., Burkina V., Zamaratskaia G., Rasmussen M.K., Bakal T., Tilami S.K., Sampels S., Kolarova J., Grabic R., et al. The effects of sewage treatment plant effluents on hepatic and intestinal biomarkers in common carp (Cyprinus carpio) Sci. Total Environ. 2018;635:1160–1169. doi: 10.1016/j.scitotenv.2018.04.188. PubMed DOI
Luo Y., Guo W., Ngo H.H., Nghiem L.D., Hai F.I., Zhang J., Liang S., Wang X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014;473:619–641. doi: 10.1016/j.scitotenv.2013.12.065. PubMed DOI
Couto C.F., Lange L.C., Amaral M.C.S. Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review. J. Water Process. Eng. 2019;32:100927. doi: 10.1016/j.jwpe.2019.100927. DOI
Golovko O., Kumar V., Fedorova G., Randak T., Grabic R. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere. 2014;111:418–426. doi: 10.1016/j.chemosphere.2014.03.132. PubMed DOI
Archer E., Petrie B., Kasprzyk-Hordern B., Wolfaardt G.M. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere. 2017;174:437–446. doi: 10.1016/j.chemosphere.2017.01.101. PubMed DOI
Wassenaar P.N.H., Verbruggen E.M.J., Cieraad E., Peijnenburg W.J.G.M., Vijver M.G. Variability in fish bioconcentration factors: Influences of study design and consequences for regulation. Chemosphere. 2020;239:124731. doi: 10.1016/j.chemosphere.2019.124731. PubMed DOI
Koba O., Steinbach C., Kroupova H.K., Grabicova K., Randak T., Grabic R. Investigation of diltiazem metabolism in fish using a hybrid quadrupole/orbital trap mass spectrometer. RCM. 2016;30:1153–1162. doi: 10.1002/rcm.7543. PubMed DOI
Steinbach C., Grabic R., Fedorova G., Koba O., Golovko O., Grabicova K., Kroupova H.K. Bioconcentration, metabolism and half-life time of the human therapeutic drug diltiazem in rainbow trout. Chemosphere. 2016;144:154–159. doi: 10.1016/j.chemosphere.2015.08.038. PubMed DOI
Grabicova K., Vojs Staňová A., Koba Ucun O., Borik A., Randak T., Grabic R. Development of a robust extraction procedure for the HPLC-ESI-HRPS determination of multi-residual pharmaceuticals in biota samples. Analytica Chimica Acta. 2018;1022:53–60. doi: 10.1016/j.aca.2018.04.011. PubMed DOI
Koba O., Grabicova K., Cerveny D., Turek J., Kolarova J., Randak T., Zlabek V., Grabic R. Transport of pharmaceuticals and their metabolites between water and sediments as a further potential exposure for aquatic organisms. J. Hazard. Mater. 2018;342:401–407. doi: 10.1016/j.jhazmat.2017.08.039. PubMed DOI
Fernández-Rubio J., Rodríguez-Gil J.L., Postigo C., Mastroianni N., López de Alda M., Barceló D., Valcárcel Y. Psychoactive pharmaceuticals and illicit drugs in coastal waters of North-Western Spain: Environmental exposure and risk assessment. Chemosphere. 2019;224:379–389. doi: 10.1016/j.chemosphere.2019.02.041. PubMed DOI
Burkina V., Zlabek V., Zamaratskaia G. Effects of pharmaceuticals present in aquatic environment on Phase I metabolism in fish. Environ. Toxicol. Pharmacol. 2015;40:430–444. doi: 10.1016/j.etap.2015.07.016. PubMed DOI
Burkina V., Rasmussen M.K., Pilipenko N., Zamaratskaia G. Comparison of xenobiotic-metabolising human, porcine, rodent, and piscine cytochrome P450. Toxicology. 2017;375:10–27. doi: 10.1016/j.tox.2016.11.014. PubMed DOI
Dubreil E., Sczubelek L., Burkina V., Zlabek V., Sakalli S., Zamaratskaia G., Hurtaud-Pessel D., Verdon E. In vitro investigations of the metabolism of Victoria pure blue BO dye to identify main metabolites for food control in fish. Chemosphere. 2020;238:124538. doi: 10.1016/j.chemosphere.2019.124538. PubMed DOI
Zlabek V., Burkina V., Borrisser-Pairó F., Sakalli S., Zamaratskaia G. Phase I metabolism of 3-methylindole, an environmental pollutant, by hepatic microsomes from carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) Chemosphere. 2016;150:304–310. doi: 10.1016/j.chemosphere.2016.02.037. PubMed DOI
Richardson S.J., Bai A., Kulkarni A.A., Moghaddam M.F. Efficiency in drug discovery: Liver S9 fraction assay as a screen for metabolic stability. Drug Metab. Lett. 2016;10:83–90. doi: 10.2174/1872312810666160223121836. PubMed DOI PMC
Hazinski T.A., Noisin E., Hamon I., DeMatteo A. Sheep lung cytochrome P4501A1 (CYP1A1): cDNA cloning and transcriptional regulation by oxygen tension. J. Clin. Invest. 1995;96:2083–2089. doi: 10.1172/JCI118257. PubMed DOI PMC
Kim E.-Y., Iwata H., Fujise Y., Tanabe S. Searching for novel CYP members using cDNA library from a minke whale liver. Mar. Environ. Res. 2004;58:495–498. doi: 10.1016/j.marenvres.2004.03.035. PubMed DOI
Loos R., Carvalho R., António D.C., Comero S., Locoro G., Tavazzi S., Paracchini B., Ghiani M., Lettieri T., Blaha L., et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013;47:6475–6487. doi: 10.1016/j.watres.2013.08.024. PubMed DOI
Patel M., Kumar R., Kishor K., Mlsna T., Pittman C.U., Jr., Mohan D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019;119:3510–3673. doi: 10.1021/acs.chemrev.8b00299. PubMed DOI
Kobayashi K., Chiba K., Yagi T., Shimada N., Taniguchi T., Horie T., Tani M., Yamamoto T., Ishizaki T., Kuroiwa Y. Identification of cytochrome P450 isoforms involved in citalopram N-demethylation by human liver microsomes. J. Pharm. Exp. Ther. 1997;280:927–933. PubMed
Rochat B., Amey M., Gillet M., Meyer U.A., Baumann P. Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human liver microsomes. Pharmacogenetics. 1997;7:1–10. doi: 10.1097/00008571-199702000-00001. PubMed DOI
Bae S.H., Lee J.K., Cho D.-Y., Bae S.K. Simultaneous determination of metoprolol and its metabolites, α-hydroxymetoprolol and O-desmethylmetoprolol, in human plasma by liquid chromatography with tandem mass spectrometry: Application to the pharmacokinetics of metoprolol associated with CYP2D6 genotypes. J. Sep. Sci. 2014;37:1256–1264. PubMed
Hicks J.K., Bishop J.R., Sangkuhl K., Müller D.J., Ji Y., Leckband S.G., Leeder J.S., Graham R.L., Chiulli D.L., Llerena A., et al. Clinical Pharmacogenetics Implementation, C., Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin. Pharmacol. Ther. 2015;98:127–134. doi: 10.1002/cpt.147. PubMed DOI PMC
Kobayashi K., Ishizuka T., Shimada N., Yoshimura Y., Kamijima K., Chiba K. Sertraline N-demethylation is catalyzed by multiple isoforms of human cytochrome P-450 in vitro. Drug Metabol. Dispos. 1999;27:763–766. PubMed
Obach R.S., Cox L.M., Tremaine L.M. Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: An in vitro study. Drug Metabol. Dispos. 2005;33:262–270. doi: 10.1124/dmd.104.002428. PubMed DOI
Connors K.A., Du B., Fitzsimmons P.N., Hoffman A.D., Chambliss C.K., Nichols J.W., Brooks B.W. Comparative pharmaceutical metabolism by rainbow trout (Oncorhynchus mykiss) liver S9 fractions. Environ. Toxicol. Chem. 2013;32:1810–1818. doi: 10.1002/etc.2240. PubMed DOI
Ereshefsky L., Dugan D. Review of the pharmacokinetics, pharmacogenetics, and drug interaction potential of antidepressants: Focus on venlafaxine. Depress. Anxiety. 2000;12:30–44. doi: 10.1002/1520-6394(2000)12:1+<30::AID-DA4>3.0.CO;2-G. PubMed DOI
Burkina V., Sakalli S., Pilipenko N., Zlabek V., Zamaratskaia G. Effect of human pharmaceuticals common to aquatic environments on hepatic CYP1A and CYP3A-like activities in rainbow trout (Oncorhynchus mykiss): An in vitro study. Chemosphere. 2018;205:380–386. doi: 10.1016/j.chemosphere.2018.04.080. PubMed DOI
Huang I.J., Sirotkin H.I., McElroy A.E. Varying the exposure period and duration of neuroactive pharmaceuticals and their metabolites modulates effects on the visual motor response in zebrafish (Danio rerio) larvae. Neurotoxicol. Teratol. 2019;72:39–48. doi: 10.1016/j.ntt.2019.01.006. PubMed DOI
Sun Y.L., Dreier J.W., Liu X.Q., Ingstrup K.G., Mægbæk M.L., Munk-Olsen T., Christensen J. Trend of antidepressants before, during, and after pregnancy across two decades-A population-based study. Brain Behav. 2019;9:e01441. doi: 10.1002/brb3.1441. PubMed DOI PMC
Howland R.H. A question about the potential cardiac toxicity of escitalopram. J. Psychosoc. Nurs. Ment. Health Serv. 2012;50:17–20. doi: 10.3928/02793695-20120307-02. PubMed DOI
Piña I.L., Di Palo K.E., Ventura H.O. Psychopharmacology and cardiovascular disease. J. Am. Coll. Cardiol. 2018;71:2346–2359. doi: 10.1016/j.jacc.2018.03.458. PubMed DOI
Wierzbinski P. Citalopram-what you need to know about this proven antidepressant. Psychiatr. Psychol. Klin. 2019;19:344–348. doi: 10.15557/PiPK.2019.0037. DOI
von Moltke L.L., Greenblatt D.J., Grassi J.M., Granda B.W., Venkatakrishnan K., Duan S.X., Fogelman S.M., Harmatz J.S., Shader R.I. Citalopram and desmethylcitalopram in vitro: Human cytochromes mediating transformation, and cytochrome inhibitory effects. Biol. Psychiatry. 1999;46:839–849. doi: 10.1016/S0006-3223(98)00353-9. PubMed DOI
Burkina V., Sakalli S., Zlabek V., Zamaratskaia G. CYP1A1 activity in rainbow trout is inhibited by the environmental pollutant p-cresol. Environ. Toxicol. Pharmacol. 2018;62:199–202. doi: 10.1016/j.etap.2018.07.013. PubMed DOI
Szotakova B., Baliharova V., Lamka J., Nozinova E., Wsol V., Velik J., Machala M., Neca J., Soucek P., Susova S., et al. Comparison of in vitro activities of biotransformation enzymes in pig, cattle, goat and sheep. Res. Vet. Sci. 2004;76:43–51. doi: 10.1016/S0034-5288(03)00143-7. PubMed DOI
Maté M.L., Lifschitz A., Sallovitz J., Ballent M., Muscher A.S., Wilkens M.R., Schröder B., Lanusse C., Virkel G.L. Cytochrome P450 3A expression and function in liver and intestinal mucosa from dexamethasone-treated sheep. J. Vet. Pharmacol. Ther. 2012;35:319–328. doi: 10.1111/j.1365-2885.2011.01334.x. PubMed DOI
Stuchlíková L., Jirásko R., Vokřál I., Lamka J., Špulák M., Holčapek M., Szotáková B., Bártíková H., Pour M., Skálová L. Investigation of the metabolism of monepantel in ovine hepatocytes by UHPLC/MS/MS. Anal. Bioanal. Chem. 2013;405:1705–1712. doi: 10.1007/s00216-012-6584-4. PubMed DOI
Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. PubMed DOI
Sakalli S., Burkina V., Zlabek V., Zamaratskaia G. Effects of acetone, acetonitrile, ethanol, methanol and DMSO on cytochrome P450 in rainbow trout (Oncorhynchus mykiss) hepatic microsomes. Toxicol. Mech. Met. 2015;25:501–506. PubMed
Hou R., Huang C., Rao K., Xu Y., Wang Z. Characterized in vitro metabolism kinetics of alkyl organophosphate esters in fish liver and intestinal microsomes. Environ. Sci. Technol. 2018;52:3202–3210. doi: 10.1021/acs.est.7b05825. PubMed DOI
Stiborova M., Borek-Dohalska L., Aimova D., Kotrbova V., Kukackova K., Janouchova K., Rupertova M., Ryslava H., Hudecek J., Frei E. Oxidation pattern of the anticancer drug ellipticine by hepatic microsomes-similarity between human and rat systems. Gen. Physiol. Biophys. 2006;25:245–261. PubMed
Jonsson M.E., Brunstrom B., Ingebrigtsen K., Brandt I. Cell-specific CYP1A expression and benzo[a]pyrene adduct formation in gills of rainbow trout (Oncorhynchus mykiss) following CYP1A induction in the laboratory and in the field. Environ. Toxicol. Chem. 2004;23:874–882. doi: 10.1897/03-211. PubMed DOI