In Vitro Metabolic Transformation of Pharmaceuticals by Hepatic S9 Fractions from Common Carp (Cyprinus carpio)

. 2020 Jun 10 ; 25 (11) : . [epub] 20200610

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32531944

Grantová podpora
18-15802S Grantová Agentura České Republiky
"CENAKVA" "LM2018099" MINISTRY OF EDUCATION, YOUTH, AND SPORTS OF THE CZECH REPUBLIC

Water from wastewater treatment plants contains concentrations of pharmaceutically active compounds as high as micrograms per liter, which can adversely affect fish health and behavior, and contaminate the food chain. Here, we tested the ability of the common carp hepatic S9 fraction to produce the main metabolites from citalopram, metoprolol, sertraline, and venlafaxine. Metabolism in fish S9 fractions was compared to that in sheep. The metabolism of citalopram was further studied in fish. Our results suggest a large difference in the rate of metabolites formation between fish and sheep. Fish hepatic S9 fractions do not show an ability to form metabolites from venlafaxine, which was also the case for sheep. Citalopram, metoprolol, and sertraline were metabolized by both fish and sheep S9. Citalopram showed concentration-dependent N-desmethylcitalopram formation with Vmax = 1781 pmol/min/mg and Km = 29.7 μM. The presence of ellipticine, a specific CYP1A inhibitor, in the incubations reduced the formation of N-desmethylcitalopram by 30-100% depending on the applied concentration. These findings suggest that CYP1A is the major enzyme contributing to the formation of N-desmethylcitalopram. In summary, the results from the present in vitro study suggest that common carp can form the major metabolites of citalopram, metoprolol, and sertraline.

Zobrazit více v PubMed

Stroski K.M., Luong K.H., Challis J.K., Chaves-Barquero L.G., Hanson M.L., Wong C.S. Wastewater sources of per- and polyfluorinated alkyl substances (PFAS) and pharmaceuticals in four Canadian Arctic communities. Sci. Total Environ. 2020;708:134494. doi: 10.1016/j.scitotenv.2019.134494. PubMed DOI

Tröger R., Köhler S.J., Franke V., Bergstedt O., Wiberg K. A case study of organic micropollutants in a major Swedish water source – Removal efficiency in seven drinking water treatment plants and influence of operational age of granulated active carbon filters. Sci. Total Environ. 2020;706:135680. doi: 10.1016/j.scitotenv.2019.135680. PubMed DOI

Batt A.L., Kincaid T.M., Kostich M.S., Lazorchak J.M., Olsen A.R. Evaluating the extent of pharmaceuticals in surface waters of the United States using a National-scale Rivers and Streams Assessment survey. Environ. Toxicol. Chem. 2016;35:874–881. doi: 10.1002/etc.3161. PubMed DOI

Petrie B., Barden R., Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015;72:3–27. doi: 10.1016/j.watres.2014.08.053. PubMed DOI

Du S.N.N., Choi J.A., McCallum E.S., McLean A.R., Borowiec B.G., Balshine S., Scott G.R. Metabolic implications of exposure to wastewater effluent in bluegill sunfish. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2019;224:10. doi: 10.1016/j.cbpc.2019.108562. PubMed DOI

McCallum E.S., Nikel K.E., Mehdi H., Du S.N.N., Bowman J.E., Midwood J.D., Kidd K.A., Scott G.R., Balshine S. Municipal wastewater effluent affects fish communities: A multi-year study involving two wastewater treatment plants. Environ. Pollut. 2019;252:1730–1741. doi: 10.1016/j.envpol.2019.06.075. PubMed DOI

Simmons D.B.D., McCallum E.S., Balshine S., Chandramouli B., Cosgrove J., Sherry J.P. Reduced anxiety is associated with the accumulation of six serotonin reuptake inhibitors in wastewater treatment effluent exposed goldfish Carassius Auratus. Sci. Rep. 2017;7:11. doi: 10.1038/s41598-017-15989-z. PubMed DOI PMC

Brooks B.W., Chambliss C.K., Stanley J.K., Ramirez A., Banks K.E., Johnson R.D., Lewis R.J. Determination of select antidepressants in fish from an effluent-dominated stream. Environ. Toxicol. Chem. 2005;24:464–469. doi: 10.1897/04-081R.1. PubMed DOI

Huerta B., Rodriguez-Mozaz S., Lazorchak J., Barcelo D., Batt A., Wathen J., Stahl L. Presence of pharmaceuticals in fish collected from urban rivers in the U.S. EPA 2008–2009 National Rivers and Streams Assessment. Sci. Total Environ. 2018;634:542–549. doi: 10.1016/j.scitotenv.2018.03.387. PubMed DOI PMC

Giang P.T., Burkina V., Sakalli S., Schmidt-Posthaus H., Rasmussen M.K., Randak T., Grabic R., Grabicova K., Fedorova G., Koba O., et al. Effects of multi-component mixtures from sewage treatment plant effluent on common carp (Cyprinus carpio) under fully realistic condition. J. Environ. Manag. 2019;63:466–484. doi: 10.1007/s00267-017-0964-7. PubMed DOI

Sakalli S., Giang P.T., Burkina V., Zamaratskaia G., Rasmussen M.K., Bakal T., Tilami S.K., Sampels S., Kolarova J., Grabic R., et al. The effects of sewage treatment plant effluents on hepatic and intestinal biomarkers in common carp (Cyprinus carpio) Sci. Total Environ. 2018;635:1160–1169. doi: 10.1016/j.scitotenv.2018.04.188. PubMed DOI

Luo Y., Guo W., Ngo H.H., Nghiem L.D., Hai F.I., Zhang J., Liang S., Wang X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014;473:619–641. doi: 10.1016/j.scitotenv.2013.12.065. PubMed DOI

Couto C.F., Lange L.C., Amaral M.C.S. Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review. J. Water Process. Eng. 2019;32:100927. doi: 10.1016/j.jwpe.2019.100927. DOI

Golovko O., Kumar V., Fedorova G., Randak T., Grabic R. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere. 2014;111:418–426. doi: 10.1016/j.chemosphere.2014.03.132. PubMed DOI

Archer E., Petrie B., Kasprzyk-Hordern B., Wolfaardt G.M. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere. 2017;174:437–446. doi: 10.1016/j.chemosphere.2017.01.101. PubMed DOI

Wassenaar P.N.H., Verbruggen E.M.J., Cieraad E., Peijnenburg W.J.G.M., Vijver M.G. Variability in fish bioconcentration factors: Influences of study design and consequences for regulation. Chemosphere. 2020;239:124731. doi: 10.1016/j.chemosphere.2019.124731. PubMed DOI

Koba O., Steinbach C., Kroupova H.K., Grabicova K., Randak T., Grabic R. Investigation of diltiazem metabolism in fish using a hybrid quadrupole/orbital trap mass spectrometer. RCM. 2016;30:1153–1162. doi: 10.1002/rcm.7543. PubMed DOI

Steinbach C., Grabic R., Fedorova G., Koba O., Golovko O., Grabicova K., Kroupova H.K. Bioconcentration, metabolism and half-life time of the human therapeutic drug diltiazem in rainbow trout. Chemosphere. 2016;144:154–159. doi: 10.1016/j.chemosphere.2015.08.038. PubMed DOI

Grabicova K., Vojs Staňová A., Koba Ucun O., Borik A., Randak T., Grabic R. Development of a robust extraction procedure for the HPLC-ESI-HRPS determination of multi-residual pharmaceuticals in biota samples. Analytica Chimica Acta. 2018;1022:53–60. doi: 10.1016/j.aca.2018.04.011. PubMed DOI

Koba O., Grabicova K., Cerveny D., Turek J., Kolarova J., Randak T., Zlabek V., Grabic R. Transport of pharmaceuticals and their metabolites between water and sediments as a further potential exposure for aquatic organisms. J. Hazard. Mater. 2018;342:401–407. doi: 10.1016/j.jhazmat.2017.08.039. PubMed DOI

Fernández-Rubio J., Rodríguez-Gil J.L., Postigo C., Mastroianni N., López de Alda M., Barceló D., Valcárcel Y. Psychoactive pharmaceuticals and illicit drugs in coastal waters of North-Western Spain: Environmental exposure and risk assessment. Chemosphere. 2019;224:379–389. doi: 10.1016/j.chemosphere.2019.02.041. PubMed DOI

Burkina V., Zlabek V., Zamaratskaia G. Effects of pharmaceuticals present in aquatic environment on Phase I metabolism in fish. Environ. Toxicol. Pharmacol. 2015;40:430–444. doi: 10.1016/j.etap.2015.07.016. PubMed DOI

Burkina V., Rasmussen M.K., Pilipenko N., Zamaratskaia G. Comparison of xenobiotic-metabolising human, porcine, rodent, and piscine cytochrome P450. Toxicology. 2017;375:10–27. doi: 10.1016/j.tox.2016.11.014. PubMed DOI

Dubreil E., Sczubelek L., Burkina V., Zlabek V., Sakalli S., Zamaratskaia G., Hurtaud-Pessel D., Verdon E. In vitro investigations of the metabolism of Victoria pure blue BO dye to identify main metabolites for food control in fish. Chemosphere. 2020;238:124538. doi: 10.1016/j.chemosphere.2019.124538. PubMed DOI

Zlabek V., Burkina V., Borrisser-Pairó F., Sakalli S., Zamaratskaia G. Phase I metabolism of 3-methylindole, an environmental pollutant, by hepatic microsomes from carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) Chemosphere. 2016;150:304–310. doi: 10.1016/j.chemosphere.2016.02.037. PubMed DOI

Richardson S.J., Bai A., Kulkarni A.A., Moghaddam M.F. Efficiency in drug discovery: Liver S9 fraction assay as a screen for metabolic stability. Drug Metab. Lett. 2016;10:83–90. doi: 10.2174/1872312810666160223121836. PubMed DOI PMC

Hazinski T.A., Noisin E., Hamon I., DeMatteo A. Sheep lung cytochrome P4501A1 (CYP1A1): cDNA cloning and transcriptional regulation by oxygen tension. J. Clin. Invest. 1995;96:2083–2089. doi: 10.1172/JCI118257. PubMed DOI PMC

Kim E.-Y., Iwata H., Fujise Y., Tanabe S. Searching for novel CYP members using cDNA library from a minke whale liver. Mar. Environ. Res. 2004;58:495–498. doi: 10.1016/j.marenvres.2004.03.035. PubMed DOI

Loos R., Carvalho R., António D.C., Comero S., Locoro G., Tavazzi S., Paracchini B., Ghiani M., Lettieri T., Blaha L., et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013;47:6475–6487. doi: 10.1016/j.watres.2013.08.024. PubMed DOI

Patel M., Kumar R., Kishor K., Mlsna T., Pittman C.U., Jr., Mohan D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019;119:3510–3673. doi: 10.1021/acs.chemrev.8b00299. PubMed DOI

Kobayashi K., Chiba K., Yagi T., Shimada N., Taniguchi T., Horie T., Tani M., Yamamoto T., Ishizaki T., Kuroiwa Y. Identification of cytochrome P450 isoforms involved in citalopram N-demethylation by human liver microsomes. J. Pharm. Exp. Ther. 1997;280:927–933. PubMed

Rochat B., Amey M., Gillet M., Meyer U.A., Baumann P. Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human liver microsomes. Pharmacogenetics. 1997;7:1–10. doi: 10.1097/00008571-199702000-00001. PubMed DOI

Bae S.H., Lee J.K., Cho D.-Y., Bae S.K. Simultaneous determination of metoprolol and its metabolites, α-hydroxymetoprolol and O-desmethylmetoprolol, in human plasma by liquid chromatography with tandem mass spectrometry: Application to the pharmacokinetics of metoprolol associated with CYP2D6 genotypes. J. Sep. Sci. 2014;37:1256–1264. PubMed

Hicks J.K., Bishop J.R., Sangkuhl K., Müller D.J., Ji Y., Leckband S.G., Leeder J.S., Graham R.L., Chiulli D.L., Llerena A., et al. Clinical Pharmacogenetics Implementation, C., Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin. Pharmacol. Ther. 2015;98:127–134. doi: 10.1002/cpt.147. PubMed DOI PMC

Kobayashi K., Ishizuka T., Shimada N., Yoshimura Y., Kamijima K., Chiba K. Sertraline N-demethylation is catalyzed by multiple isoforms of human cytochrome P-450 in vitro. Drug Metabol. Dispos. 1999;27:763–766. PubMed

Obach R.S., Cox L.M., Tremaine L.M. Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: An in vitro study. Drug Metabol. Dispos. 2005;33:262–270. doi: 10.1124/dmd.104.002428. PubMed DOI

Connors K.A., Du B., Fitzsimmons P.N., Hoffman A.D., Chambliss C.K., Nichols J.W., Brooks B.W. Comparative pharmaceutical metabolism by rainbow trout (Oncorhynchus mykiss) liver S9 fractions. Environ. Toxicol. Chem. 2013;32:1810–1818. doi: 10.1002/etc.2240. PubMed DOI

Ereshefsky L., Dugan D. Review of the pharmacokinetics, pharmacogenetics, and drug interaction potential of antidepressants: Focus on venlafaxine. Depress. Anxiety. 2000;12:30–44. doi: 10.1002/1520-6394(2000)12:1+<30::AID-DA4>3.0.CO;2-G. PubMed DOI

Burkina V., Sakalli S., Pilipenko N., Zlabek V., Zamaratskaia G. Effect of human pharmaceuticals common to aquatic environments on hepatic CYP1A and CYP3A-like activities in rainbow trout (Oncorhynchus mykiss): An in vitro study. Chemosphere. 2018;205:380–386. doi: 10.1016/j.chemosphere.2018.04.080. PubMed DOI

Huang I.J., Sirotkin H.I., McElroy A.E. Varying the exposure period and duration of neuroactive pharmaceuticals and their metabolites modulates effects on the visual motor response in zebrafish (Danio rerio) larvae. Neurotoxicol. Teratol. 2019;72:39–48. doi: 10.1016/j.ntt.2019.01.006. PubMed DOI

Sun Y.L., Dreier J.W., Liu X.Q., Ingstrup K.G., Mægbæk M.L., Munk-Olsen T., Christensen J. Trend of antidepressants before, during, and after pregnancy across two decades-A population-based study. Brain Behav. 2019;9:e01441. doi: 10.1002/brb3.1441. PubMed DOI PMC

Howland R.H. A question about the potential cardiac toxicity of escitalopram. J. Psychosoc. Nurs. Ment. Health Serv. 2012;50:17–20. doi: 10.3928/02793695-20120307-02. PubMed DOI

Piña I.L., Di Palo K.E., Ventura H.O. Psychopharmacology and cardiovascular disease. J. Am. Coll. Cardiol. 2018;71:2346–2359. doi: 10.1016/j.jacc.2018.03.458. PubMed DOI

Wierzbinski P. Citalopram-what you need to know about this proven antidepressant. Psychiatr. Psychol. Klin. 2019;19:344–348. doi: 10.15557/PiPK.2019.0037. DOI

von Moltke L.L., Greenblatt D.J., Grassi J.M., Granda B.W., Venkatakrishnan K., Duan S.X., Fogelman S.M., Harmatz J.S., Shader R.I. Citalopram and desmethylcitalopram in vitro: Human cytochromes mediating transformation, and cytochrome inhibitory effects. Biol. Psychiatry. 1999;46:839–849. doi: 10.1016/S0006-3223(98)00353-9. PubMed DOI

Burkina V., Sakalli S., Zlabek V., Zamaratskaia G. CYP1A1 activity in rainbow trout is inhibited by the environmental pollutant p-cresol. Environ. Toxicol. Pharmacol. 2018;62:199–202. doi: 10.1016/j.etap.2018.07.013. PubMed DOI

Szotakova B., Baliharova V., Lamka J., Nozinova E., Wsol V., Velik J., Machala M., Neca J., Soucek P., Susova S., et al. Comparison of in vitro activities of biotransformation enzymes in pig, cattle, goat and sheep. Res. Vet. Sci. 2004;76:43–51. doi: 10.1016/S0034-5288(03)00143-7. PubMed DOI

Maté M.L., Lifschitz A., Sallovitz J., Ballent M., Muscher A.S., Wilkens M.R., Schröder B., Lanusse C., Virkel G.L. Cytochrome P450 3A expression and function in liver and intestinal mucosa from dexamethasone-treated sheep. J. Vet. Pharmacol. Ther. 2012;35:319–328. doi: 10.1111/j.1365-2885.2011.01334.x. PubMed DOI

Stuchlíková L., Jirásko R., Vokřál I., Lamka J., Špulák M., Holčapek M., Szotáková B., Bártíková H., Pour M., Skálová L. Investigation of the metabolism of monepantel in ovine hepatocytes by UHPLC/MS/MS. Anal. Bioanal. Chem. 2013;405:1705–1712. doi: 10.1007/s00216-012-6584-4. PubMed DOI

Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. PubMed DOI

Sakalli S., Burkina V., Zlabek V., Zamaratskaia G. Effects of acetone, acetonitrile, ethanol, methanol and DMSO on cytochrome P450 in rainbow trout (Oncorhynchus mykiss) hepatic microsomes. Toxicol. Mech. Met. 2015;25:501–506. PubMed

Hou R., Huang C., Rao K., Xu Y., Wang Z. Characterized in vitro metabolism kinetics of alkyl organophosphate esters in fish liver and intestinal microsomes. Environ. Sci. Technol. 2018;52:3202–3210. doi: 10.1021/acs.est.7b05825. PubMed DOI

Stiborova M., Borek-Dohalska L., Aimova D., Kotrbova V., Kukackova K., Janouchova K., Rupertova M., Ryslava H., Hudecek J., Frei E. Oxidation pattern of the anticancer drug ellipticine by hepatic microsomes-similarity between human and rat systems. Gen. Physiol. Biophys. 2006;25:245–261. PubMed

Jonsson M.E., Brunstrom B., Ingebrigtsen K., Brandt I. Cell-specific CYP1A expression and benzo[a]pyrene adduct formation in gills of rainbow trout (Oncorhynchus mykiss) following CYP1A induction in the laboratory and in the field. Environ. Toxicol. Chem. 2004;23:874–882. doi: 10.1897/03-211. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...