The Influence of In-Mould Annealing and Accelerated Ageing on the Properties of Impact-Modified Poly(Lactic Acid)/Biochar Composites
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000843
Ministry of Education, Youth and Sports of the Czech Republic
SGS-2022-5011
Student Grand Competition of the Technical University of Liberec
PubMed
39599193
PubMed Central
PMC11598645
DOI
10.3390/polym16223102
PII: polym16223102
Knihovny.cz E-resources
- Keywords
- PLA, ageing, biochar, impact modifier, mechanical properties, mould temperature, particle size,
- Publication type
- Journal Article MeSH
In the last few decades, a large number of natural additives have been analysed in connection with the improvement of the properties of poly(lactic acid) (PLA) bioplastic materials. This article comprehensively analyses the applicability of a highly stable and progressive multifunctional additive produced from renewable resources-biochar. The effect of biochar on the structural development and various thermo-mechanical properties was evaluated as a function of the biochar size and volume, addition of an impact modifier and in-mould annealing during injection moulding. In addition, the effect of accelerated ageing on the change in properties was also analysed. The evaluated results showed a significant influence of the particle size and biochar content on the properties of PLA biocomposites. However, the crucial aspect was the production process with a higher mould temperature and longer production time. Consequently, the effect of additives with adjusted processing worked synergistically on the performance of the resulting biocomposites. The accelerated ageing process did not induce any significant changes in the mechanical, impact and heat resistance behaviour of neat PLA. On the other hand, significant effects on the behaviour of the modified PLA biocomposites were observed. Impact-modified PLA achieved a toughness of 28 kJ/m2, an increase of 61% compared to neat PLA. Similar observations were made when submicron biochar was incorporated into the PLA matrix (a 22% increase with PLA/5B1). These increases were even more pronounced when injected into a 100 °C mould. Due to the synergistic effect, excellent impact toughness results of 95 kJ/m2 (a 428% increase) were achieved with PLA/IM/5B1. Moreover, these results persisted even after accelerated ageing.
See more in PubMed
Vieira M.G.A., da Silva M.A., dos Santos L.O., Beppu M.M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011;47:254–263. doi: 10.1016/j.eurpolymj.2010.12.011. DOI
Courgneau C., Domenek S., Guinault A., Avérous L., Ducruet V. Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly (Lactic Acid) J. Polym. Environ. 2011;19:362–371. doi: 10.1007/s10924-011-0285-5. DOI
Darie-Niţă R.N., Vasile C., Irimia A., Lipşa R., Râpă M. Evaluation of Some Eco-friendly Plasticizers for PLA Films Processing. J. Appl. Polym. Sci. 2016;133:43223. doi: 10.1002/app.43223. DOI
Hassouna F., Raquez J.-M., Addiego F., Dubois P., Toniazzo V., Ruch D. New Approach on the Development of Plasticized Polylactide (PLA): Grafting of Poly (Ethylene Glycol)(PEG) via Reactive Extrusion. Eur. Polym. J. 2011;47:2134–2144. doi: 10.1016/j.eurpolymj.2011.08.001. DOI
Arrieta M.P., Samper M.D., López J., Jiménez A. Combined Effect of Poly (Hydroxybutyrate) and Plasticizers on Polylactic Acid Properties for Film Intended for Food Packaging. J. Polym. Environ. 2014;22:460–470. doi: 10.1007/s10924-014-0654-y. DOI
Gálvez J., Correa Aguirre J.P., Hidalgo Salazar M.A., Vera Mondragón B., Wagner E., Caicedo C. Effect of Extrusion Screw Speed and Plasticizer Proportions on the Rheological, Thermal, Mechanical, Morphological and Superficial Properties of PLA. Polymers. 2020;12:2111. doi: 10.3390/polym12092111. PubMed DOI PMC
Aliotta L., Cinelli P., Coltelli M.B., Righetti M.C., Gazzano M., Lazzeri A. Effect of Nucleating Agents on Crystallinity and Properties of Poly (Lactic Acid)(PLA) Eur. Polym. J. 2017;93:822–832. doi: 10.1016/j.eurpolymj.2017.04.041. DOI
Tang Z., Zhang C., Liu X., Zhu J. The Crystallization Behavior and Mechanical Properties of Polylactic Acid in the Presence of a Crystal Nucleating Agent. J. Appl. Polym. Sci. 2012;125:1108–1115. doi: 10.1002/app.34799. DOI
Fehri S., Cinelli P., Coltelli M.B., Anguillesi I., Lazzeri A. Thermal Properties of Plasticized Poly (Lactic Acid)(PLA) Containing Nucleating Agent. Int. J. Chem. Eng. Appl. 2016;7:85–88. doi: 10.7763/IJCEA.2016.V7.548. DOI
Feng Y., Ma P., Xu P., Wang R., Dong W., Chen M., Joziasse C. The Crystallization Behavior of Poly (Lactic Acid) with Different Types of Nucleating Agents. Int. J. Biol. Macromol. 2018;106:955–962. doi: 10.1016/j.ijbiomac.2017.08.095. PubMed DOI
Suksut B., Deeprasertkul C. Effect of Nucleating Agents on Physical Properties of Poly(Lactic Acid) and Its Blend with Natural Rubber. J Polym Environ. 2011;19:288–296. doi: 10.1007/s10924-010-0278-9. DOI
Kawamoto N., Sakai A., Horikoshi T., Urushihara T., Tobita E. Nucleating Agent for Poly(L -lactic Acid)—An Optimization of Chemical Structure of Hydrazide Compound for Advanced Nucleation Ability. J. Appl. Polym. Sci. 2007;103:198–203. doi: 10.1002/app.25109. DOI
Ilyas R.A., Sapuan S.M., Harussani M.M., Hakimi M., Haziq M.Z.M., Atikah M.S.N., Asyraf M.R.M., Ishak M.R., Razman M.R., Nurazzi N.M. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers. 2021;13:1326. doi: 10.3390/polym13081326. PubMed DOI PMC
Kannan C.S., Ramesh R., Raviram R., Aadithya M. Study of Mechanical Properties of Sustainable Biocomposite Panels Using Jute-PLA and Sisal-PLA. Mater. Today Proc. 2023. in press .
Trivedi A.K., Gupta M.K., Singh H. PLA Based Biocomposites for Sustainable Products: A Review. Adv. Ind. Eng. Polym. Res. 2023;6:382–395. doi: 10.1016/j.aiepr.2023.02.002. DOI
Manral A., Ahmad F., Chaudhary V. Static and Dynamic Mechanical Properties of PLA Bio-Composite with Hybrid Reinforcement of Flax and Jute. Mater. Today Proc. 2020;25:577–580. doi: 10.1016/j.matpr.2019.07.240. DOI
Chaitanya S., Singh I. Ecofriendly Treatment of Aloe Vera Fibers for PLA Based Green Composites. Int. J. Precis. Eng. Manuf.-Green Tech. 2018;5:143–150. doi: 10.1007/s40684-018-0015-8. DOI
Motru S., Adithyakrishna V.H., Bharath J., Guruprasad R. Development and Evaluation of Mechanical Properties of Biodegradable PLA/Flax Fiber Green Composite Laminates. Mater. Today Proc. 2020;24:641–649. doi: 10.1016/j.matpr.2020.04.318. DOI
Adugna E.K., Desplentere F., Yalew T.B. Mechanical Properties of Short Sisal Fiber Reinforced Polylactic Acid (Pla) Biocomposite Processed by Injection Molding. Branna J. Eng. Technol. 2019;1:20–36.
Legesse N.T. Review on Jute Fiber Reinforced PLA Biocomposite. [(accessed on 22 September 2024)]. Available online: https://www.theseus.fi/bitstream/handle/10024/340357/Thesis_NetsanetLegesse.pdf?sequence=2&isAllowed=y.
Asim M., Paridah M.T., Chandrasekar M., Shahroze R.M., Jawaid M., Nasir M., Siakeng R. Thermal Stability of Natural Fibers and Their Polymer Composites. Iran. Polym. J. 2020;29:625–648. doi: 10.1007/s13726-020-00824-6. DOI
Kodal M., Sirin H., Ozkoc G. Long-and Short-Term Stability of Plasticized Poly (Lactic Acid): Effects of Plasticizers Type on Thermal, Mechanical and Morphological Properties. Polym. Bull. 2019;76:423–445. doi: 10.1007/s00289-018-2388-9. DOI
Tsou C.-H., Suen M.-C., Yao W.-H., Yeh J.-T., Wu C.-S., Tsou C.-Y., Chiu S.-H., Chen J.-C., Wang R.Y., Lin S.-M. Preparation and Characterization of Bioplastic-Based Green Renewable Composites from Tapioca with Acetyl Tributyl Citrate as a Plasticizer. Materials. 2014;7:5617–5632. doi: 10.3390/ma7085617. PubMed DOI PMC
Brdlík P., Borůvka M., Běhálek L., Lenfeld P. Biodegradation of Poly (Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope. Polymers. 2021;13:594. doi: 10.3390/polym13040594. PubMed DOI PMC
Brdlík P., Novák J., Bor\uuvka M., Běhálek L., Lenfeld P. The Influence of Plasticizers and Accelerated Ageing on Biodegradation of PLA under Controlled Composting Conditions. Polymers. 2022;15:140. doi: 10.3390/polym15010140. PubMed DOI PMC
Qin M., Chen C., Song B., Shen M., Cao W., Yang H., Zeng G., Gong J. A Review of Biodegradable Plastics to Biodegradable Microplastics: Another Ecological Threat to Soil Environments? J. Clean. Prod. 2021;312:127816. doi: 10.1016/j.jclepro.2021.127816. DOI
Sun X.-L., Xiang H., Xiong H.-Q., Fang Y.-C., Wang Y. Bioremediation of Microplastics in Freshwater Environments: A Systematic Review of Biofilm Culture, Degradation Mechanisms, and Analytical Methods. Sci. Total Environ. 2023;863:160953. doi: 10.1016/j.scitotenv.2022.160953. PubMed DOI
Bartoli M., Arrigo R., Malucelli G., Tagliaferro A., Duraccio D. Recent Advances in Biochar Polymer Composites. Polymers. 2022;14:2506. doi: 10.3390/polym14122506. PubMed DOI PMC
Lehmann J., Joseph S. Biochar for Environmental Management: Science, Technology and Implementation. Routledge; London, UK: 2015.
Ok Y.S., Uchimiya S.M., Chang S.X., Bolan N. Biochar: Production, Characterization, and Applications. CRC Press; Boca Raton, FL, USA: 2015.
Hamzenejad Taghlidabad R., Sepehr E. Heavy Metals Immobilization in Contaminated Soil by Grape-Pruning-Residue Biochar. Arch. Agron. Soil Sci. 2018;64:1041–1052. doi: 10.1080/03650340.2017.1407872. DOI
Li Y., Yu H., Liu L., Yu H. Application of Co-Pyrolysis Biochar for the Adsorption and Immobilization of Heavy Metals in Contaminated Environmental Substrates. J. Hazard. Mater. 2021;420:126655. doi: 10.1016/j.jhazmat.2021.126655. PubMed DOI
Joseph S., Van H.T., Mai T.L.A., Duong T.M.H., Weldon S., Munroe P., Mitchell D., Taherymoosavi S. Immobilization of Heavy Metals in Contaminated Soil after Mining Activity by Using Biochar and Other Industrial By-Products: The Significant Role of Minerals on the Biochar Surfaces. Environ. Technol. 2018;40:3200–3215. PubMed
Hussain R., Ravi K., Garg A. Influence of Biochar on the Soil Water Retention Characteristics (SWRC): Potential Application in Geotechnical Engineering Structures. Soil Tillage Res. 2020;204:104713. doi: 10.1016/j.still.2020.104713. DOI
Bikbulatova S., Tahmasebi A., Zhang Z., Rish S.K., Yu J. Understanding Water Retention Behavior and Mechanism in Bio-Char. Fuel Process. Technol. 2018;169:101–111. doi: 10.1016/j.fuproc.2017.09.025. DOI
Wang D., Li C., Parikh S.J., Scow K.M. Impact of Biochar on Water Retention of Two Agricultural Soils–A Multi-Scale Analysis. Geoderma. 2019;340:185–191. doi: 10.1016/j.geoderma.2019.01.012. DOI
Laird D.A., Brown R.C., Amonette J.E., Lehmann J. Review of the Pyrolysis Platform for Coproducing Bio-oil and Biochar. Biofuels Bioprod. Biorefining. 2009;3:547–562. doi: 10.1002/bbb.169. DOI
Yoshizawa S., Tanaka S., Ohata M. Proliferation Effect of Aerobic Micro-Organisms during Composting of Rice Bran by Addition of Biomass Charcoal; Proceedings of the International Agrichar Conference; Terrigal, NSW, Australia. 27 April–2 May 2007; p. 26.
Steiner C., Teixeira W.G., Lehmann J., Zech W. Amazonian Dark Earths Explorations in Space and Time. Springer; Berlin/Heidelberg, Germany: 2004. Microbial Response to Charcoal Amendments of Highly Weathered Soils and Amazonian Dark Earths in Central Amazonia—Preliminary Results; pp. 195–212.
Pietikäinen J., Kiikkilä O., Fritze H. Charcoal as a Habitat for Microbes and Its Effect on the Microbial Community of the Underlying Humus. Oikos. 2000;89:231–242. doi: 10.1034/j.1600-0706.2000.890203.x. DOI
Bajwa D.S., Adhikari S., Shojaeiarani J., Bajwa S.G., Pandey P., Shanmugam S.R. Characterization of Bio-Carbon and Ligno-Cellulosic Fiber Reinforced Bio-Composites with Compatibilizer. Constr. Build. Mater. 2019;204:193–202. doi: 10.1016/j.conbuildmat.2019.01.068. DOI
Kane S., Van Roijen E., Ryan C., Miller S. Reducing the Environmental Impacts of Plastics While Increasing Strength: Biochar Fillers in Biodegradable, Recycled, and Fossil-Fuel Derived Plastics. Compos. Part C Open Access. 2022;8:100253. doi: 10.1016/j.jcomc.2022.100253. DOI
Kane S., Ryan C. Biochar from Food Waste as a Sustainable Replacement for Carbon Black in Upcycled or Compostable Composites. Compos. Part C Open Access. 2022;8:100274. doi: 10.1016/j.jcomc.2022.100274. DOI
Zouari M., Devallance D.B., Marrot L. Effect of Biochar Addition on Mechanical Properties, Thermal Stability, and Water Resistance of Hemp-Polylactic Acid (PLA) Composites. Materials. 2022;15:2271. doi: 10.3390/ma15062271. PubMed DOI PMC
Hernandez-Charpak Y.D., Trabold T.A., Lewis C.L., Diaz C.A. Biochar-Filled Plastics: Effect of Feedstock on Thermal and Mechanical Properties. Biomass Convers. Biorefinery. 2022;12:4349–4360. doi: 10.1007/s13399-022-02340-4. DOI
Aup-Ngoen K., Noipitak M. Effect of Carbon-Rich Biochar on Mechanical Properties of PLA-Biochar Composites. Sustain. Chem. Pharm. 2020;15:100204. doi: 10.1016/j.scp.2019.100204. DOI
Pudełko A., Postawa P., Stachowiak T., Malińska K., Dróżdż D. Waste Derived Biochar as an Alternative Filler in Biocomposites-Mechanical, Thermal and Morphological Properties of Biochar Added Biocomposites. J. Clean. Prod. 2021;278:123850. doi: 10.1016/j.jclepro.2020.123850. DOI
Das O., Sarmah A.K., Bhattacharyya D. Biocomposites from Waste Derived Biochars: Mechanical, Thermal, Chemical, and Morphological Properties. Waste Manag. 2016;49:560–570. doi: 10.1016/j.wasman.2015.12.007. PubMed DOI
Zhang S., Liang Y., Qian X., Hui D., Sheng K. Pyrolysis Kinetics and Mechanical Properties of Poly (Lactic Acid)/Bamboo Particle Biocomposites: Effect of Particle Size Distribution. Nanotechnol. Rev. 2020;9:524–533. doi: 10.1515/ntrev-2020-0037. DOI
Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics. ISO Central Secretaria; Vernier, Switzerland: 2022.
Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on Materials and Articles Intended to Come into Contact with Food and Repealing Directives 80/590/EEC and 89/109/EEC, Strasbourg, France, 2004
Commission regulation (EC) No 1169/2004 of 24 June 2004 fixing the representative prices and the additional import duties for molasses in the sugar sector applicable from 25 June 2004
Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO Central Secretariat; Vernier, Switzerland: 2019.
Plastics—Determination of Charpy Impact Properties—Part 1: Non-Instrumented Impact Test. ISO Central Secretariat; Vernier, Switzerland: 2023.
Harris A.M., Lee E.C. Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity. J. Appl. Polym. Sci. 2008;107:2246–2255. doi: 10.1002/app.27261. DOI
Nagarajan V., Zhang K., Misra M., Mohanty A.K. Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature. ACS Appl. Mater. Interfaces. 2015;7:11203–11214. doi: 10.1021/acsami.5b01145. PubMed DOI
Sullivan E.M., Moon R.J., Kalaitzidou K. Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films. Materials. 2015;8:8106–8116. doi: 10.3390/ma8125447. PubMed DOI PMC
Zhang Q., Wang R., Liu W., Yang Y., Huang L., Huo E., Ma Z. New Strategy for Reinforcing Polylactic Acid Composites: Towards the Insight into the Effect of Biochar Microspheres. Int. J. Biol. Macromol. 2023;245:125487. doi: 10.1016/j.ijbiomac.2023.125487. PubMed DOI
Arrigo R., Bartoli M., Malucelli G. Poly (Lactic Acid)–Biochar Biocomposites: Effect of Processing and Filler Content on Rheological, Thermal, and Mechanical Properties. Polymers. 2020;12:892. doi: 10.3390/polym12040892. PubMed DOI PMC
Sarasua J.-R., Prud’homme R.E., Wisniewski M., Le Borgne A., Spassky N. Crystallization and Melting Behavior of Polylactides. Macromolecules. 1998;31:3895–3905. doi: 10.1021/ma971545p. DOI
Plastics—Thermoplastic Materials—Determination of Vicat Softening Temperature (VST) ISO Central Secretariat; Vernier, Switzerland: 2022.
Haeldermans T., Samyn P., Cardinaels R., Vandamme D., Vanreppelen K., Cuypers A., Schreurs S. Poly (Lactic Acid) Biocomposites Containing Biochar Particles: Effects of Fillers and Plasticizers on Crystallization and Thermal Properties. Express Polym. Lett. 2021;15:343–360. doi: 10.3144/expresspolymlett.2021.30. DOI
Zhao S.-X., Ta N., Wang X.-D. Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material. Energies. 2017;10:1293. doi: 10.3390/en10091293. DOI
Al-Wabel M.I., Al-Omran A., El-Naggar A.H., Nadeem M., Usman A.R. Pyrolysis Temperature Induced Changes in Characteristics and Chemical Composition of Biochar Produced from Conocarpus Wastes. Bioresour. Technol. 2013;131:374–379. doi: 10.1016/j.biortech.2012.12.165. PubMed DOI
Yin Q., Liu M., Ren H. Biochar Produced from the Co-Pyrolysis of Sewage Sludge and Walnut Shell for Ammonium and Phosphate Adsorption from Water. J. Environ. Manag. 2019;249:109410. doi: 10.1016/j.jenvman.2019.109410. PubMed DOI
Chen D., Liu D., Zhang H., Chen Y., Li Q. Bamboo Pyrolysis Using TG–FTIR and a Lab-Scale Reactor: Analysis of Pyrolysis Behavior, Product Properties, and Carbon and Energy Yields. Fuel. 2015;148:79–86. doi: 10.1016/j.fuel.2015.01.092. DOI
Liu Z., Han G. Production of Solid Fuel Biochar from Waste Biomass by Low Temperature Pyrolysis. Fuel. 2015;158:159–165. doi: 10.1016/j.fuel.2015.05.032. DOI
Lee Y., Park J., Ryu C., Gang K.S., Yang W., Park Y.-K., Jung J., Hyun S. Comparison of Biochar Properties from Biomass Residues Produced by Slow Pyrolysis at 500 °C. Bioresour. Technol. 2013;148:196–201. doi: 10.1016/j.biortech.2013.08.135. PubMed DOI
Uzun B.B., Apaydin-Varol E., Ateş F., Özbay N., Pütün A.E. Synthetic Fuel Production from Tea Waste: Characterisation of Bio-Oil and Bio-Char. Fuel. 2010;89:176–184. doi: 10.1016/j.fuel.2009.08.040. DOI
Jafri N., Wong W.Y., Doshi V., Yoon L.W., Cheah K.H. A Review on Production and Characterization of Biochars for Application in Direct Carbon Fuel Cells. Process Saf. Environ. Prot. 2018;118:152–166. doi: 10.1016/j.psep.2018.06.036. DOI
Leng L., Xiong Q., Yang L., Li H., Zhou Y., Zhang W., Jiang S., Li H., Huang H. An Overview on Engineering the Surface Area and Porosity of Biochar. Sci. Total Environ. 2021;763:144204. doi: 10.1016/j.scitotenv.2020.144204. PubMed DOI
Composting. Czech Agency for Standardization; Prague, Czech Republic: 2020.
Regulation (ČR) n. 273/2021 Coll. Regulation on the Details of Waste Management. Parliament of the Czech Republic; Prague, Czech Republic: 2021.
Aliotta L., Sciara L.M., Cinelli P., Canesi I., Lazzeri A. Improvement of the PLA Crystallinity and Heat Distortion Temperature Optimizing the Content of Nucleating Agents and the Injection Molding Cycle Time. Polymers. 2022;14:977. doi: 10.3390/polym14050977. PubMed DOI PMC
Schäfer H., Pretschuh C., Brüggemann O. Reduction of Cycle Times in Injection Molding of PLA through Bio-Based Nucleating Agents. Eur. Polym. J. 2019;115:6–11. doi: 10.1016/j.eurpolymj.2019.03.011. DOI
Ageyeva T., Kovács J.G., Tábi T. Comparison of the Efficiency of the Most Effective Heterogeneous Nucleating Agents for Poly(Lactic Acid) J. Therm. Anal. Calorim. 2022;147:8199–8211. doi: 10.1007/s10973-021-11145-y. DOI
Tábi T., Ageyeva T., Kovács J.G. The Influence of Nucleating Agents, Plasticizers, and Molding Conditions on the Properties of Injection Molded PLA Products. Mater. Today Commun. 2022;32:103936. doi: 10.1016/j.mtcomm.2022.103936. DOI
Di Lorenzo M.L., Rubino P., Luijkx R., Hélou M. Influence of Chain Structure on Crystal Polymorphism of Poly(Lactic Acid). Part 1: Effect of Optical Purity of the Monomer. Colloid Polym. Sci. 2014;292:399–409. doi: 10.1007/s00396-013-3081-z. DOI
Righetti M.C., Tombari E., Di Lorenzo M.L. The Role of the Crystallization Temperature on the Nanophase Structure Evolution of Poly[(R)-3-Hydroxybutyrate] J. Phys. Chem. B. 2013;117:12303–12311. doi: 10.1021/jp4063127. PubMed DOI
Belbachir S., Zaïri F., Ayoub G., Maschke U., Naït-Abdelaziz M., Gloaguen J.M., Benguediab M., Lefebvre J.M. Modelling of Photodegradation Effect on Elastic–Viscoplastic Behaviour of Amorphous Polylactic Acid Films. J. Mech. Phys. Solids. 2010;58:241–255. doi: 10.1016/j.jmps.2009.10.003. DOI
Salač J., Šerá J., Jurča M., Verney V., Marek A.A., Koutnỳ M. Photodegradation and Biodegradation of Poly (Lactic) Acid Containing Orotic Acid as a Nucleation Agent. Materials. 2019;12:481. doi: 10.3390/ma12030481. PubMed DOI PMC
Cui L., Imre B., Tátraaljai D., Pukánszky B. Physical Ageing of Poly (Lactic Acid): Factors and Consequences for Practice. Polymer. 2020;186:122014. doi: 10.1016/j.polymer.2019.122014. DOI
Müller P., Imre B., Bere J., Móczó J., Pukánszky B. Physical Ageing and Molecular Mobility in PLA Blends and Composites. J. Therm. Anal. Calorim. 2015;122:1423–1433. doi: 10.1007/s10973-015-4831-6. DOI
Lesaffre N., Bellayer S., Fontaine G., Jimenez M., Bourbigot S. Revealing the Impact of Ageing on a Flame Retarded PLA. Polym. Degrad. Stab. 2016;127:88–97. doi: 10.1016/j.polymdegradstab.2015.10.019. DOI
Rocca-Smith J.R., Chau N., Champion D., Brachais C.-H., Marcuzzo E., Sensidoni A., Piasente F., Karbowiak T., Debeaufort F. Effect of the State of Water and Relative Humidity on Ageing of PLA Films. Food Chem. 2017;236:109–119. doi: 10.1016/j.foodchem.2017.02.113. PubMed DOI
Vadori R., Mohanty A.K., Misra M. The Effect of Mold Temperature on the Performance of Injection Molded Poly(Lactic Acid)-Based Bioplastic. Macro Mater. Eng. 2013;298:981–990. doi: 10.1002/mame.201200274. DOI
Scaffaro R., Morreale M., Mirabella F., La Mantia F.P. Preparation and Recycling of Plasticized PLA. Macro Mater. Eng. 2011;296:141–150. doi: 10.1002/mame.201000221. DOI
Mozrall A.M., Hernandez-Charpak Y.D., Trabold T.A., Diaz C.A. Effect of Biochar Content and Particle Size on Mechanical Properties of Biochar-Bioplastic Composites. Sustain. Chem. Pharm. 2023;35:101223. doi: 10.1016/j.scp.2023.101223. DOI
Qian S., Zhang H., Yao W., Sheng K. Effects of Bamboo Cellulose Nanowhisker Content on the Morphology, Crystallization, Mechanical, and Thermal Properties of PLA Matrix Biocomposites. Compos. Part B Eng. 2018;133:203–209. doi: 10.1016/j.compositesb.2017.09.040. DOI
Xia Y., Qian S., Zhang X., Zhang Z., Zhu C. Biochar as an Efficient Reinforcing Agent for Poly (Lactic Acid)/Poly (ε-Caprolactone) Biodegradable Composites with High Robustness and Thermo-Resistance. Ind. Crops Prod. 2024;219:119049. doi: 10.1016/j.indcrop.2024.119049. DOI