The Influence of Plasticizers and Accelerated Ageing on Biodegradation of PLA under Controlled Composting Conditions

. 2022 Dec 28 ; 15 (1) : . [epub] 20221228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36616489

The overall performance of plasticizers on common mechanical and physical properties, as well as on the processability of polylactic acid (PLA) films, is well-explored. However, the influence of plasticizers on biodegradation is still in its infancy. In this study, the influence of natural-based dicarboxylic acid-based ester plasticizers (MC2178 and MC2192), acetyl tributyl citrate (ATBC Citroflex A4), and polyethylene glycol (PEG 400) on the biodegradation of extruded PLA films was evaluated. Furthermore, the influence of accelerated ageing on the performance properties and biodegradation of films was further investigated. The biodegradation of films was determined under controlled thermophilic composting conditions (ISO 14855-1). Apart from respirometry, an evaluation of the degree of disintegration, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) of film surfaces was conducted. The influence of melt-processing with plasticizers has a significant effect on structural changes. Especially, the degree of crystallinity has been found to be a major factor which affects the biodegradation rate. The lowest biodegradation rates have been evaluated for films plasticized with PEG 400. These lower molecular weight plasticizers enhanced the crystallinity degrees of the PLA phase due to an increase in chain mobility. On the contrary, the highest biodegradation rate was found for films plasticized with MC2192, which has a higher molecular weight and evoked minimal structural changes of the PLA. From the evaluated results, it could also be stated that migration of plasticizers, physical ageing, and chain scission of films prompted by ageing significantly influenced both the mechanical and thermal properties, as well as the biodegradation rate. Therefore, the ageing of parts has to be taken into consideration for the proper evolution of the biodegradation of plasticized PLA and their applications.

Zobrazit více v PubMed

Plastic-the Facts 2021. [online]. B.m.: Plastic Europe Association of Plastic Manufactures. 2021. [(accessed on 1 September 2022)]. Available online: http://plasticseurope.org/knowledge-hub/plastics-the-facts-2021.

Hao Y., Shafer G. Models for Predicting Global Plastic Waste. Aresty RURJ. 2021;1:57–61. doi: 10.14713/arestyrurj.v1i2.154. DOI

Becker N., Siebert-Raths A. Biopolymers Facts and Statistics 2021. Hochschule Hannover; Hannover, Germany: 2021.

Rahman M., Brazel C.S. The Plasticizer Market: An Assessment of Traditional Plasticizers and Research Trends to Meet New Challenges. Prog. Polym. Sci. 2004;29:1223–1248. doi: 10.1016/j.progpolymsci.2004.10.001. DOI

Vieira M.G.A., da Silva M.A., dos Santos L.O., Beppu M.M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011;47:254–263. doi: 10.1016/j.eurpolymj.2010.12.011. DOI

Jacobsen S., Fritz H.-G. Plasticizing Polylactide—the Effect of Different Plasticizers on the Mechanical Properties. Polym. Eng. Sci. 1999;39:1303–1310. doi: 10.1002/pen.11517. DOI

Al-Mulla E.A.J., Yunus W.M., Wan Z., Ibrahim N.A.B., Rahman M.Z.A. Properties of Epoxidized Palm Oil Plasticized Polytlactic Acid. J. Mater. Sci. 2010;45:1942–1946. doi: 10.1007/s10853-009-4185-1. DOI

Carbonell-Verdu A., Samper M.D., Garcia-Garcia D., Sanchez-Nacher L., Balart R. Plasticization Effect of Epoxidized Cottonseed Oil (ECSO) on Poly (Lactic Acid) Ind. Crop. Prod. 2017;104:278–286. doi: 10.1016/j.indcrop.2017.04.050. DOI

Ljungberg N., Wesslen B. Tributyl Citrate Oligomers as Plasticizers for Poly (Lactic Acid): Thermo-Mechanical Film Properties and Aging. Polym. J. 2003;44:7679–7688. doi: 10.1016/j.polymer.2003.09.055. DOI

Maiza M., Benaniba M.T., Quintard G., Massardier-Nageotte V. Biobased Additive Plasticizing Polylactic Acid (PLA) Polimeros. 2015;25:581–590. doi: 10.1590/0104-1428.1986. DOI

Hassouna F., Raquez J.-M., Addiego F., Dubois P., Toniazzo V., Ruch D. New Approach on the Development of Plasticized Polylactide (PLA): Grafting of Poly (Ethylene Glycol)(PEG) via Reactive Extrusion. Eur. Polym. J. 2011;47:2134–2144. doi: 10.1016/j.eurpolymj.2011.08.001. DOI

Darie-Niţă R.N., Vasile C., Irimia A., Lipşa R., Râpă M. Evaluation of Some Eco-friendly Plasticizers for PLA Films Processing. J. Appl. Polym. Sci. 2016;133:43223. doi: 10.1002/app.43223. DOI

Chieng B.W., Azowa I.N., Yunus W., Wan M.Z., Hussein M.Z. Proceedings of the Advanced Materials Research. Volume 1024. Trans Tech Publications; Zürich, Switzerland: 2014. Effects of Graphene Nanopletelets on Poly (Lactic Acid)/Poly (Ethylene Glycol) Polymer Nanocomposites; pp. 136–139.

Courgneau C., Domenek S., Guinault A., Avérous L., Ducruet V. Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly (Lactic Acid) J. Polym. Environ. 2011;19:362–371. doi: 10.1007/s10924-011-0285-5. DOI

Sessini V., Palenzuela M., Damián J., Mosquera M.E. Bio-Based Polyether from Limonene Oxide Catalytic ROP as Green Polymeric Plasticizer for PLA. Polym. J. 2020;210:123003. doi: 10.1016/j.polymer.2020.123003. DOI

Kodal M., Sirin H., Ozkoc G. Long-and Short-Term Stability of Plasticized Poly (Lactic Acid): Effects of Plasticizers Type on Thermal, Mechanical and Morphological Properties. Polym. Bull. 2019;76:423–445. doi: 10.1007/s00289-018-2388-9. DOI

Tsou C.-H., Suen M.-C., Yao W.-H., Yeh J.-T., Wu C.-S., Tsou C.-Y., Chiu S.-H., Chen J.-C., Wang R.Y., Lin S.-M. Preparation and Characterization of Bioplastic-Based Green Renewable Composites from Tapioca with Acetyl Tributyl Citrate as a Plasticizer. Materials. 2014;7:5617–5632. doi: 10.3390/ma7085617. PubMed DOI PMC

Burgos N., Martino V.P., Jiménez A. Characterization and Ageing Study of Poly (Lactic Acid) Films Plasticized with Oligomeric Lactic Acid. Polym. Degrad. Stab. 2013;98:651–658. doi: 10.1016/j.polymdegradstab.2012.11.009. DOI

Itävaara M., Karjomaa S., Selin J.-F. Biodegradation of Polylactide in Aerobic and Anaerobic Thermophilic Conditions. Chemosphere. 2002;46:879–885. doi: 10.1016/S0045-6535(01)00163-1. PubMed DOI

Kale G., Kijchavengkul T., Auras R., Rubino M., Selke S.E., Singh S.P. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007;7:255–277. doi: 10.1002/mabi.200600168. PubMed DOI

Kolstad J.J., Vink E.T., De Wilde B., Debeer L. Assessment of Anaerobic Degradation of IngeoTM Polylactides under Accelerated Landfill Conditions. Polym. Degrad. Stab. 2012;97:1131–1141. doi: 10.1016/j.polymdegradstab.2012.04.003. DOI

Ren Y., Hu J., Yang M., Weng Y. Biodegradation Behavior of Poly (Lactic Acid)(PLA), Poly (Butylene Adipate-Co-Terephthalate)(PBAT), and Their Blends under Digested Sludge Conditions. J. Polym. Environ. 2019;27:2784–2792. doi: 10.1007/s10924-019-01563-3. DOI

Poly(ethylene glycol) Product Specification (Product Number 202398). [online]. B.m.: Merck KGaA, Darmstadt, Germany. 2022. [(accessed on 1 March 2022)]. Available online: http://www.sigmaaldrich.com.

Sequeira M.C., Pereira M.F., Avelino H.M., Caetano F.J., Fareleira J.M. Viscosity Measurements of Poly (Ethyleneglycol) 400 [PEG 400] at Temperatures from 293 K to 348 K and at Pressures up to 50 MPa Using the Vibrating Wire Technique. Fluid Phase Equilib. 2019;496:7–16. doi: 10.1016/j.fluid.2019.05.012. DOI

Wypych A. Databook of Plasticizers. Elsevier; Amsterdam, The Netherlands: 2017.

Citroflex A-4 Data Sheet. [online]. B.m.: Special Chem. 2022. [(accessed on 10 January 2022)]. Available online: http://polymer-additives.specialchem.com/product/a-vertellus-specialties-citroflex-a4.

Gibbons W.S., Kusy R.P. Influence of Plasticizer Configurational Changes on the Dielectric Characteristics of Highly Plasticized Poly (Vinyl Chloride) Polym. J. 1998;39:3167–3178. doi: 10.1016/S0032-3861(97)10001-5. DOI

MC 2178 Technical Data Sheet. [online]. B.m.: Emery Oleochemicals. 2022. [(accessed on 15 January 2022)]. Available online: http://greenpolymeradditives.emeryoleo.com.

MC 2192 Technical Data Sheet. [online]. B.m.: Emery Oleochemicals. 2022. [(accessed on 15 January 2022)]. Available online: http://greenpolymeradditives.emeryoleo.com.

Average Values of Air [online] [(accessed on 1 October 2022)]. Available online: http://www.qpro.cz/Prumerny-stav-vzduchu-dle-vyberu-hodin.

Râpă M., Miteluţ A.C., Tănase E.E., Grosu E., Popescu P., Popa M.E., Rosnes J.T., Sivertsvik M., Darie-Niţă R.N., Vasile C. Influence of Chitosan on Mechanical, Thermal, Barrier and Antimicrobial Properties of PLA-Biocomposites for Food Packaging. Compos. Part B Eng. 2016;102:112–121. doi: 10.1016/j.compositesb.2016.07.016. DOI

Gálvez J., Correa Aguirre J.P., Hidalgo Salazar M.A., Vera Mondragón B., Wagner E., Caicedo C. Effect of Extrusion Screw Speed and Plasticizer Proportions on the Rheological, Thermal, Mechanical, Morphological and Superficial Properties of PLA. Polymers. 2020;12:2111. doi: 10.3390/polym12092111. PubMed DOI PMC

Greco A., Ferrari F. Thermal Behavior of PLA Plasticized by Commercial and Cardanol-Derived Plasticizers and the Effect on the Mechanical Properties. J. Therm. Anal. Calorim. 2021;146:131–141. doi: 10.1007/s10973-020-10403-9. DOI

Aliotta L., Vannozzi A., Panariello L., Gigante V., Coltelli M.-B., Lazzeri A. Sustainable Micro and Nano Additives for Controlling the Migration of a Biobased Plasticizer from PLA-Based Flexible Films. Polymers. 2020;12:1366. doi: 10.3390/polym12061366. PubMed DOI PMC

Rapa M., Darie-Nita R.N., Irimia A.M., Sivertsvik M., Rosnes J.T., Trifoi A.R., Vasile C., Tanase E.E., Gherman T., Popa M.E. Comparative Analysis of Two Bioplasticizers Used to Modulate the Properties of PLA Biocomposites. Mater. Plast. 2017;54:610–615. doi: 10.37358/MP.17.4.4910. DOI

Hu Y., Rogunova M., Topolkaraev V., Hiltner A., Baer E. Aging of Poly (Lactide)/Poly (Ethylene Glycol) Blends. Part 1. Poly (Lactide) with Low Stereoregularity. Polym. J. 2003;44:5701–5710. doi: 10.1016/S0032-3861(03)00614-1. DOI

Hu Y., Hu Y.S., Topolkaraev V., Hiltner A., Baer E. Aging of Poly (Lactide)/Poly (Ethylene Glycol) Blends. Part 2. Poly (Lactide) with High Stereoregularity. Polym. J. 2003;44:5711–5720. doi: 10.1016/S0032-3861(03)00615-3. DOI

Farah S., Anderson D.G., Langer R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016;107:367–392. doi: 10.1016/j.addr.2016.06.012. PubMed DOI

Rafie M.A.F., Marsilla K.K., Hamid Z.A.A., Rusli A., Abdullah M.K. Enhanced Mechanical Properties of Plasticized Polylactic Acid Filament for Fused Deposition Modelling: Effect of in Situ Heat Treatment. Prog. Rubber Plast. Rcycl. Technol. 2020;36:131–142. doi: 10.1177/1477760619895018. DOI

Brdlík P., Borůvka M., Běhálek L., Lenfeld P. Biodegradation of Poly (Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope. Polymers. 2021;13:594. doi: 10.3390/polym13040594. PubMed DOI PMC

Wu H., Nagarajan S., Zhou L., Duan Y., Zhang J. Synthesis and Characterization of Cellulose Nanocrystal-Graft-Poly (D-Lactide) and Its Nanocomposite with Poly (L-Lactide) Polym. J. 2016;103:365–375. doi: 10.1016/j.polymer.2016.09.070. DOI

Jiménez A., Peltzer M., Ruseckaite R. Poly (Lactic Acid) Science and Technology: Processing, Properties, Additives and Applications. Royal Society of Chemistry; London, UK: 2014.

Erceg M., KovaČiĆ T., KlariĆ I. Thermal Degradation of Poly (3-Hydroxybutyrate) Plasticized with Acetyl Tributyl Citrate. Polym. Degrad. Stab. 2005;90:313–318. doi: 10.1016/j.polymdegradstab.2005.04.048. DOI

Arrieta M.P., Samper M.D., López J., Jiménez A. Combined Effect of Poly (Hydroxybutyrate) and Plasticizers on Polylactic Acid Properties for Film Intended for Food Packaging. J. Polym. Environ. 2014;22:460–470. doi: 10.1007/s10924-014-0654-y. DOI

Arrieta M.P., López J., Rayón E., Jiménez A. Disintegrability under Composting Conditions of Plasticized PLA–PHB Blends. Polym. Degrad. Stab. 2014;108:307–318. doi: 10.1016/j.polymdegradstab.2014.01.034. DOI

Gorrasi G., Pantani R. Synthesis, Structure and Properties of Poly (Lactic Acid) Springer; Cham, Switzerland: 2017. Hydrolysis and Biodegradation of Poly (Lactic Acid) pp. 119–151.

Amorin N.S., Rosa G., Alves J.F., Gonçalves S.P., Franchetti S.M., Fechine G.J. Study of Thermodegradation and Thermostabilization of Poly (Lactide Acid) Using Subsequent Extrusion Cycles. J. App. Polym. Sci. 2014;131:40023. doi: 10.1002/app.40023. DOI

Weng Y.-X., Wang L., Zhang M., Wang X.-L., Wang Y.-Z. Biodegradation Behavior of P (3HB, 4HB)/PLA Blends in Real Soil Environments. Polym. Test. 2013;32:60–70. doi: 10.1016/j.polymertesting.2012.09.014. DOI

Lee J.C., Moon J.H., Jeong J.-H., Kim M.Y., Kim B.M., Choi M.-C., Kim J.R., Ha C.-S. Biodegradability of Poly (Lactic Acid)(PLA)/Lactic Acid (LA) Blends Using Anaerobic Digester Sludge. Macromol. Res. 2016;24:741–747. doi: 10.1007/s13233-016-4100-y. DOI

Zaidi L., Kaci M., Bruzaud S., Bourmaud A., Grohens Y. Effect of Natural Weather on the Structure and Properties of Polylactide/Cloisite 30B Nanocomposites. Polym. Degrad. Stab. 2010;95:1751–1758. doi: 10.1016/j.polymdegradstab.2010.05.014. DOI

Vasile C., Pamfil D., Râpă M., Darie-Niţă R.N., Mitelut A.C., Popa E.E., Popescu P.A., Draghici M.C., Popa M.E. Study of the Soil Burial Degradation of Some PLA/CS Biocomposites. Compos. Part B Eng. 2018;142:251–262. doi: 10.1016/j.compositesb.2018.01.026. DOI

Oliveira M., Santos E., Araújo A., Fechine G.J., Machado A.V., Botelho G. The Role of Shear and Stabilizer on PLA Degradation. Polym. Test. 2016;51:109–116. doi: 10.1016/j.polymertesting.2016.03.005. DOI

Kammoun M., Haddar M., Kallel T.K., Dammak M., Sayari A. Biological Properties and Biodegradation Studies of Chitosan Biofilms Plasticized with PEG and Glycerol. Int. J. Biol. Macromol. 2013;62:433–438. doi: 10.1016/j.ijbiomac.2013.09.025. PubMed DOI

Aitor L., Erlantz L. A Review on the Thermomechanical Properties and Biodegradation Behaviour of Polyester. Eur. Polym. J. 2019;121:109296.

Salomez M., George M., Fabre P., Touchaleaume F., Cesar G., Lajarrige A., Gastaldi E. A Comparative Study of Degradation Mechanisms of PHBV and PBSA under Laboratory-Scale Composting Conditions. Polym. Degrad. Stab. 2019;167:102–113. doi: 10.1016/j.polymdegradstab.2019.06.025. DOI

Cao N., Yang X., Fu Y. Effects of Various Plasticizers on Mechanical and Water Vapor Barrier Properties of Gelatin Films. Food Hydrocoll. 2009;23:729–735. doi: 10.1016/j.foodhyd.2008.07.017. DOI

Laboulfie F., Hémati M., Lamure A., Diguet S. Effect of the Plasticizer on Permeability, Mechanical Resistance and Thermal Behaviour of Composite Coating Films. Powder Technol. 2013;238:14–19. doi: 10.1016/j.powtec.2012.07.035. DOI

Turhan K.N., Sahbaz F., Güner A. A Spectrophotometric Study of Hydrogen Bonding in Methylcellulose-based Edible Films Plasticized by Polyethylene Glycol. J. Food Sci. 2001;66:59–62. doi: 10.1111/j.1365-2621.2001.tb15581.x. DOI

Cadar O., Paul M., Roman C., Miclean M., Majdik C. Biodegradation Behaviour of Poly (Lactic Acid) and (Lactic Acid-Ethylene Glycol-Malonic or Succinic Acid) Copolymers under Controlled Composting Conditions in a Laboratory Test System. Polym. Degrad. Stab. 2012;97:354–357. doi: 10.1016/j.polymdegradstab.2011.12.006. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...