Biodegradation of Poly(Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000843
Technická Univerzita v Liberci
PubMed
33669420
PubMed Central
PMC7920484
DOI
10.3390/polym13040594
PII: polym13040594
Knihovny.cz E-resources
- Keywords
- CaCO3, aerobic biodegradation, biocomposites, freshwater biotope, nano-cellulose, plasticiser, poly(lactic acid),
- Publication type
- Journal Article MeSH
The influence of additives such as natural-based plasticiser acetyl tributyl citrate (ATBC), CaCO3 and lignin-coated cellulose nanocrystals (L-CNC) on the biodegradation of polylactic acid (PLA) biocomposites was studied by monitoring microbial metabolic activity through respirometry. Ternary biocomposites and control samples were processed by a twin-screw extruder equipped with a flat film die. Commonly available compost was used for the determination of the ultimate aerobic biodegradability of PLA biocomposites under controlled composting conditions (ISO 14855-1). In addition, the hydro-degradability of prepared films in a freshwater biotope was analysed. To determine the efficiency of hydro-degradation, qualitative analyses (SEM, DSC, TGA and FTIR) were conducted. The results showed obvious differences in the degradation rate of PLA biocomposites. The application of ATBC at 10 wt.% loading increased the biodegradation rate of PLA. The addition of 10 wt.% of CaCO3 into the plasticised PLA matrix ensured an even higher degradation rate at aerobic thermophilic composting conditions. In such samples (PLA/ATBC/CaCO3), 94% biodegradation in 60 days was observed. In contrast, neat PLA exposed to the same conditions achieved only 16% biodegradation. Slightly inhibited microorganism activity was also observed for ternary PLA biocomposites containing L-CNC (1 wt.% loading). The results of qualitative analyses of degradation in a freshwater biotope confirmed increased biodegradation potential of ternary biocomposites containing both CaCO3 and ATBC. Significant differences in the chemical and structural compositions of PLA biocomposites were found in the evaluated period of three months.
See more in PubMed
Thakur V.K., Thakur M.K., Kessler M.R. Handbook of Composites from Renewable Materials, Structure and Chemistry. Volume 1. John Wiley & Sons; Hoboken, NJ, USA: 2016.
Ebnesajjad S. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications. William Andrew; Norwich, NY, USA: 2012.
Maiza M., Benaniba M.T., Quintard G., Massardier-Nageotte V. Biobased Additive Plasticizing Polylactic Acid (PLA) Polimeros. 2015;25:581–590. doi: 10.1590/0104-1428.1986. DOI
Thompson R.C., Moore C.J., Vom Saal F.S., Swan S.H. Plastics, the Environment and Human Health: Current Consensus and Future Trends. Philos. Trans. Royal Soc. B Biol. Sci. 2009;364:2153–2166. doi: 10.1098/rstb.2009.0053. PubMed DOI PMC
Kfoury G., Raquez J.-M., Hassouna F., Odent J., Toniazzo V., Ruch D., Dubois P. Recent Advances in High Performance Poly (Lactide): From “Green” Plasticization to Super-Tough Materials via (Reactive) Compounding. Front. Chem. 2013;1:32. doi: 10.3389/fchem.2013.00032. PubMed DOI PMC
Jacobsen S., Fritz H.-G. Plasticizing Polylactide—the Effect of Different Plasticizers on the Mechanical Properties. Polym. Eng. Sci. 1999;39:1303–1310. doi: 10.1002/pen.11517. DOI
Rahman M., Brazel C.S. The Plasticizer Market: An Assessment of Traditional Plasticizers and Research Trends to Meet New Challenges. Prog. Polym. Sci. 2004;29:1223–1248. doi: 10.1016/j.progpolymsci.2004.10.001. DOI
Vieira M.G.A., da Silva M.A., dos Santos L.O., Beppu M.M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011;47:254–263. doi: 10.1016/j.eurpolymj.2010.12.011. DOI
Xiao H., Liu F., Jiang T., Yeh J.-T. Kinetics and Crystal Structure of Isothermal Crystallization of Poly (Lactic Acid) Plasticized with Triphenyl Phosphate. J. Appl. Polym. Sci. 2010;117:2980–2992. doi: 10.1002/app.32225. DOI
Burgos N., Martino V.P., Jiménez A. Characterization and Ageing Study of Poly (Lactic Acid) Films Plasticized with Oligomeric Lactic Acid. Polym. Degrad. Stab. 2013;98:651–658. doi: 10.1016/j.polymdegradstab.2012.11.009. DOI
Liu H., Zhang J. Research Progress in Toughening Modification of Poly (Lactic Acid) J. Polym. Sci. Part B Polym. Phys. 2011;49:1051–1083. doi: 10.1002/polb.22283. DOI
Ljungberg N., Wesslen B. Tributyl Citrate Oligomers as Plasticizers for Poly (Lactic Acid): Thermo-Mechanical Film Properties and Aging. Polymer. 2003;44:7679–7688. doi: 10.1016/j.polymer.2003.09.055. DOI
Tan B.H., Muiruri J.K., Li Z., He C. Recent Progress in Using Stereocomplexation for Enhancement of Thermal and Mechanical Property of Polylactide. ACS Sustain. Chem. Eng. 2016;4:5370–5391. doi: 10.1021/acssuschemeng.6b01713. DOI
Dartora P.C., da Rosa Loureiro M., de Camargo Forte M.M. Crystallization Kinetics and Morphology of Poly (Lactic Acid) with Polysaccharide as Nucleating Agent. J. Therm. Anal. Calorim. 2018;134:1705–1713. doi: 10.1007/s10973-018-7744-3. DOI
Gupta A., Simmons W., Schueneman G.T., Mintz E.A. Lignin-Coated Cellulose Nanocrystals as Promising Nucleating Agent for Poly (Lactic Acid) J. Therm. Anal. Calorim. 2016;126:1243–1251. doi: 10.1007/s10973-016-5657-6. DOI
Saeidlou S., Huneault M.A., Li H., Park C.B. Poly (Lactic Acid) Crystallization. Prog. Polym. Sci. 2012;37:1657–1677. doi: 10.1016/j.progpolymsci.2012.07.005. DOI
Samadi K., Francisco M., Hegde S., Diaz C.A., Trabold T.A., Dell E.M., Lewis C.L. Mechanical, Rheological and Anaerobic Biodegradation Behavior of a Poly (Lactic Acid) Blend Containing a Poly (Lactic Acid)-Co-Poly (Glycolic Acid) Copolymer. Polym. Degrad. Stab. 2019;170:109018. doi: 10.1016/j.polymdegradstab.2019.109018. DOI
Aitor L., Erlantz L. A Review on the Thermomechanical Properties and Biodegradation Behaviour of Polyester. Eur. Polym. J. 2019;121:1–31.
Siparsky G.L., Voorhees K.J., Dorgan J.R., Schilling K. Water Transport in Polylactic Acid (PLA), PLA/Polycaprolactone Copolymers, and PLA/Polyethylene Glycol Blends. J. Environ. Polym. Degrad. 1997;5:125–136.
Itävaara M., Karjomaa S., Selin J.-F. Biodegradation of Polylactide in Aerobic and Anaerobic Thermophilic Conditions. Chemosphere. 2002;46:879–885. doi: 10.1016/S0045-6535(01)00163-1. PubMed DOI
Kolstad J.J., Vink E.T., De Wilde B., Debeer L. Assessment of Anaerobic Degradation of IngeoTM Polylactides under Accelerated Landfill Conditions. Polymer Degrad. Stab. 2012;97:1131–1141. doi: 10.1016/j.polymdegradstab.2012.04.003. DOI
Karlssion S., Ndazi B.S. Characterization of Hydrolytic Degradation of Polylactic Acid/Rice Hulls Composites in Water at Different Temperatures. Express Polym. Lett. 2011;5:119–131.
Kale G., Kijchavengkul T., Auras R., Rubino M., Selke S.E., Singh S.P. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007;7:255–277. doi: 10.1002/mabi.200600168. PubMed DOI
Cadar O., Paul M., Roman C., Miclean M., Majdik C. Biodegradation Behaviour of Poly (Lactic Acid) and (Lactic Acid-Ethylene Glycol-Malonic or Succinic Acid) Copolymers under Controlled Composting Conditions in a Laboratory Test System. Polym. Degrad. Stab. 2012;97:354–357. doi: 10.1016/j.polymdegradstab.2011.12.006. DOI
Iovino R., Zullo R., Rao M.A., Cassar L., Gianfreda L. Biodegradation of Poly (Lactic Acid)/Starch/Coir Biocomposites under Controlled Composting Conditions. Polym. Degrad. Stab. 2008;93:147–157. doi: 10.1016/j.polymdegradstab.2007.10.011. DOI
Soni R.K., Soam S., Dutt K. Studies on Biodegradability of Copolymers of Lactic Acid, Terephthalic Acid and Ethylene Glycol. Polym. Degrad. Stab. 2009;94:432–437. doi: 10.1016/j.polymdegradstab.2008.11.014. DOI
Ren Y., Hu J., Yang M., Weng Y. Biodegradation Behavior of Poly (Lactic Acid)(PLA), Poly (Butylene Adipate-Co-Terephthalate)(PBAT), and Their Blends Under Digested Sludge Conditions. J. Polym. Environ. 2019;27:2784–2792. doi: 10.1007/s10924-019-01563-3. DOI
Kallel T.K., Houichi H., Sayari A., Kammoun M. Assessment of Biodegradation of PLA/PCL and PLA/PEG Biopolymers under Aerobic and Anaerobic Conditions. J. Mater. Environ. Sci. 2015;6:2542–2549.
Xu H., Yang Y., Yu X. Lightweight Materials from Biopolymers and Biofibers. American Chemical Society; Washington, DC, USA: 2014.
Tuomela M., Vikman M., Hatakka A., Itävaara M. Biodegradation of Lignin in a Compost Environment: A Review. Bioresour. Technol. 2000;72:169–183. doi: 10.1016/S0960-8524(99)00104-2. DOI
Micales J.A., Skog K.E. The Decomposition of Forest Products in Landfills. Int. Biodeterior. Biodegrad. 1997;39:145–158. doi: 10.1016/S0964-8305(97)83389-6. DOI
Hegde S., Dell E., Lewis C., Trabold T.A., Diaz C.A. Anaerobic Biodegradation of Bioplastic Packaging Materials; Proceedings of the 21st IAPRI World Conference on Packaging; Zhuhai, China. 19–22 June 2018.
Nekhamanurak Y.B., Patanathabutr P., Hongsriphan N. Mechanical Properties of Hydrophilicity Modified CaCO3-Poly (Lactic Acid) Nanocomposite. Int. J. Appl. Phys. Math. 2012;2:98. doi: 10.7763/IJAPM.2012.V2.62. DOI
Nekhamanurak B., Patanathabutr P., Hongsriphan N. The Influence of Micro-/Nano-CaCO3 on Thermal Stability and Melt Rheology Behavior of Poly (Lactic Acid) Energy Procedia. 2014;56:118–128. doi: 10.1016/j.egypro.2014.07.139. DOI
Sessini V., Palenzuela M., Damián J., Mosquera M.E. Bio-Based Polyether from Limonene Oxide Catalytic ROP as Green Polymeric Plasticizer for PLA. Polymer. 2020;210:123003. doi: 10.1016/j.polymer.2020.123003. DOI
Lee J.C., Moon J.H., Jeong J.-H., Kim M.Y., Kim B.M., Choi M.-C., Kim J.R., Ha C.-S. Biodegradability of Poly (Lactic Acid)(PLA)/Lactic Acid (LA) Blends Using Anaerobic Digester Sludge. Macromol. Res. 2016;24:741–747. doi: 10.1007/s13233-016-4100-y. DOI
Weng Y.-X., Wang L., Zhang M., Wang X.-L., Wang Y.-Z. Biodegradation Behavior of P (3HB, 4HB)/PLA Blends in Real Soil Environments. Polym. Test. 2013;32:60–70. doi: 10.1016/j.polymertesting.2012.09.014. DOI
Amorin N.S., Rosa G., Alves J.F., Gonçalves S.P., Franchetti S.M., Fechine G.J. Study of Thermodegradation and Thermostabilization of Poly (Lactide Acid) Using Subsequent Extrusion Cycles. J. Appl. Polym. Sci. 2014;131:1–8. doi: 10.1002/app.40023. DOI
Zaidi L., Kaci M., Bruzaud S., Bourmaud A., Grohens Y. Effect of Natural Weather on the Structure and Properties of Polylactide/Cloisite 30B Nanocomposites. Polym. Degrad. Stab. 2010;95:1751–1758. doi: 10.1016/j.polymdegradstab.2010.05.014. DOI
Oliveira M., Santos E., Araújo A., Fechine G.J., Machado A.V., Botelho G. The Role of Shear and Stabilizer on PLA Degradation. Polym. Test. 2016;51:109–116. doi: 10.1016/j.polymertesting.2016.03.005. DOI
Wu H., Nagarajan S., Zhou L., Duan Y., Zhang J. Synthesis and Characterization of Cellulose Nanocrystal-Graft-Poly (d-Lactide) and Its Nanocomposite with Poly (l-Lactide) Polymer. 2016;103:365–375. doi: 10.1016/j.polymer.2016.09.070. DOI
Sasaki S., Asakura T. Helix Distortion and Crystal Structure of the α-Form of Poly (l-Lactide) Macromolecules. 2003;36:8385–8390. doi: 10.1021/ma0348674. DOI
Androsch R., Schick C., Di Lorenzo M.L. Melting of Conformationally Disordered Crystals (A′-Phase) of Poly (L-lactic Acid) Macromol. Chem. Phys. 2014;215:1134–1139. doi: 10.1002/macp.201400126. DOI
Borůvka M., Běhálek L., Novák J. Properties and Crystallization of PLLA Biopolymers with Cellulose Nanocrystals and Organic Plasticizer. MM Sci. J. 2020;2020:4080–4085. doi: 10.17973/MMSJ.2020_11_2020030. DOI
Suksut B., Deeprasertkul C. Effect of Nucleating Agents on Physical Properties of Poly (Lactic Acid) and Its Blend with Natural Rubber. J. Polym. Environ. 2011;19:288–296. doi: 10.1007/s10924-010-0278-9. DOI
Nelson K., Retsina T., Iakovlev M., van Heiningen A., Deng Y., Shatkin J.A., Mulyadi A. Materials Research for Manufacturing. Springer; Berlin/Heidelberg, Germany: 2016. American process: Production of low cost nanocellulose for renewable, advanced materials applications; pp. 267–302.
Boruvka M., Behalek L., Lenfeld P., Ngaowthong C., Pechociakova M. Structure-Related Properties of Bionanocomposites Based on Poly (Lactic Acid), Cellulose Nanocrystals and Organic Impact Modifier. Mater. Technol. 2019;34:143–156. doi: 10.1080/10667857.2018.1540332. DOI
Lizundia E., Mateos P., Vilas J.L. Tuneable Hydrolytic Degradation of Poly (l-Lactide) Scaffolds Triggered by ZnO Nanoparticles. Mater. Sci. Eng. C. 2017;75:714–720. doi: 10.1016/j.msec.2017.02.104. PubMed DOI
Albertsson A.-C., Varma I.K. Degradable Aliphatic Polyesters. Springer; Berlin/Heidelberg, Germany: 2002. Aliphatic polyesters: Synthesis, properties and applications; pp. 1–40.
The Influence of Additives and Environment on Biodegradation of PHBV Biocomposites