Degradation of Polylactic Acid Polymer and Biocomposites Exposed to Controlled Climatic Ageing: Mechanical and Thermal Properties and Structure

. 2023 Jul 08 ; 15 (14) : . [epub] 20230708

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37514367

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843 Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Program Research, Development and Education

This paper deals with the study of the degradation of polylactic acid (PLA) material structures and biocomposite systems with a PLA matrix containing ground natural particulate waste fillers, buckwheat husks and egg shells. Waste fillers were used without difficult cleaning operations to describe the effect of the raw waste material on PLA. Biocomposites with raw waste materials are increasingly coming to the forefront in car interiors and packaging products. The prepared material systems were exposed to controlled climatic ageing simulating long-term solar radiation and cyclic outdoor conditions. The degradation of the biocomposite systems was evaluated via thermal (differential scanning calorimetry) and mechanical properties (tensile and flexural tests, Charpy impact toughness). In addition to evaluating the degradation of the material structures using standardized tests, the influence and effect of controlled climatic ageing was visually assessed using SEM images (electron microscopy) of the surfaces and fracture surfaces of the test specimens.

Zobrazit více v PubMed

Udayakumar G.P., Muthusamy S., Selvaganesh B., Sivarajasekar N., Rambabu K., Banat F., Sivamani S., Sivakumar N., Hosseini-Bandegharaei A., Show P.L. Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. J. Environ. Chem. Eng. 2021;9:105322. doi: 10.1016/j.jece.2021.105322. DOI

Tănase E.E., Râpă M., Popa O. Biopolymers based on renewable resources—A review; Proceedings of the International Conference Agriculture for Life, Life for Agriculture; Bucharest, Romania. 5–7 June 2014; pp. 5–7.

EUBIO_Admin EuBP_FS_What_Are_Bioplastics. European Bioplastics e.V.; Berlin, Germany: 2020.

Current Figures on the Bioplastics Market: IfBB Presents New Edition of “Biopolymers-Facts and Statistics”. IfBB-Institute for Bioplastics and Biocomposites. [(accessed on 27 June 2023)]. Available online: https://www.ifbb-hannover.de/en/press-release/current-figures-on-the-bioplastics-market-ifbb-presents-new-edition-of-biopolymers-facts-and-statistics.html.

Hamad K., Kaseem M., Yang H., Deri F., Ko Y. Properties and medical applications of polylactic acid: A review. Express Polym. Lett. 2015;9:435–455. doi: 10.3144/expresspolymlett.2015.42. DOI

Inkinen S., Hakkarainen M., Albertsson A.-C., Södergård A. From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors. Biomacromolecules. 2011;12:523–532. doi: 10.1021/bm101302t. PubMed DOI

MacDonald R.T., McCarthy S.P., Gross R.A. Enzymatic degradability of poly(lactide): Effects of chain stereochemistry and material crystallinity. Macromolecules. 1996;29:7356–7361. doi: 10.1021/ma960513j. DOI

Pang X., Zhuang X., Tang Z., Chen X. Polylactic acid (PLA): Research, development and industrialization. Biotechnol. J. 2010;5:1125–1136. doi: 10.1002/biot.201000135. PubMed DOI

Jin K., Tang Y., Zhu X., Zhou Y. Polylactic acid based biocomposite films reinforced with silanized nanocrystalline cellulose. Int. J. Biol. Macromol. 2020;162:1109–1117. doi: 10.1016/j.ijbiomac.2020.06.201. PubMed DOI

Abdelrahman M.S., Nassar S.H., Mashaly H., Mahmoud S., Maamoun D., Khattab T.A. Polymerization products of lactic acid as synthetic thickening agents for textile printing. J. Mol. Struct. 2020;1203:127421. doi: 10.1016/j.molstruc.2019.127421. DOI

Zhao X., Li J., Liu J., Zhou W., Peng S. Recent progress of preparation of branched poly(lactic acid) and its application in the modification of polylactic acid materials. Int. J. Biol. Macromol. 2021;193:874–892. doi: 10.1016/j.ijbiomac.2021.10.154. PubMed DOI

Murariu M., Dubois P. PLA composites: From production to properties. Adv. Drug Deliv. Rev. 2016;107:17–46. doi: 10.1016/j.addr.2016.04.003. PubMed DOI

Ögmundarson Ó., Sukumara S., Laurent A., Fantke P. Environmental hotspots of lactic acid production systems. GCB Bioenergy. 2020;12:19–38. doi: 10.1111/gcbb.12652. DOI

Auras R.A., Lim L.-T., Selke S.E., Tsuji H. Poly (Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2011.

Boisseau A., Davies P., Choqueuse D., Nellissen P., Peters L., Nickel R., Adolphs G., Renaud C., OCV O.C., Thiebaud F. Seawater Ageing of Composites for Ocean Energy Conversion Sytems; Proceedings of the ICCM-17th International Conference on Composite Materials; Edinburgh, UK. 27–31 July 2009.

Vu T., Nikaeen P., Chirdon W., Khattab A., Depan D. Improved Weathering Performance of Poly(Lactic Acid) through Carbon Nanotubes Addition: Thermal, Microstructural, and Nanomechanical Analyses. Biomimetics. 2020;5:61. doi: 10.3390/biomimetics5040061. PubMed DOI PMC

White C., White K.M., Pickett J. Service Life Prediction of Polymers and Plastics Exposed to Outdoor Weathering. William Andrew; Norwich, NY, USA: 2017.

Litauszki K., Kovács Z., Mészáros L., Kmetty Á. Accelerated photodegradation of poly(lactic acid) with weathering test chamber and laser exposure—A comparative study. Polym. Test. 2019;76:411–419. doi: 10.1016/j.polymertesting.2019.03.038. DOI

Ammala A., Bateman S., Dean K., Petinakis E., Sangwan P., Wong S., Yuan Q., Yu L., Patrick C., Leong K.H. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 2011;36:1015–1049. doi: 10.1016/j.progpolymsci.2010.12.002. DOI

Battegazzore D., Noori A., Frache A. Natural Wastes as Particle Filler for Poly(Lactic Acid)-Based Composites. J. Compos. Mater. 2019;53:783–797. doi: 10.1177/0021998318791316. DOI

Kumar B.A., Saminathan R., Tharwan M., Vigneshwaran M., Babu P.S., Ram S., Kumar P.M. Study on the mechanical properties of a hybrid polymer composite using egg shell powder based bio-filler. Mater. Today Proc. 2022;69:679–683. doi: 10.1016/j.matpr.2022.07.114. DOI

Jałbrzykowski M., Oksiuta Z., Obidziński S., Czyżewska U., Osiecki T., Kroll L., Yildiz M.J. Assessment of innovative PLA biopolymer compositions with plant waste fillers. Eng. Fail. Anal. 2022;139:106496. doi: 10.1016/j.engfailanal.2022.106496. DOI

Zemnukhova L.A., Shkorina E.D., Fedorishcheva G.A. Composition of Inorganic Components of Buckwheat Husk and Straw. Russ. J. Appl. Chem. 2005;78:324–328. doi: 10.1007/s11167-005-0284-1. DOI

Sivagnanamani G.S., Begum S.R., Siva R., Kumar M.S. Experimental Investigation on Influence of Waste Egg Shell Particles on Polylactic Acid Matrix for Additive Manufacturing Application. J. Mater. Eng. Perform. 2022;31:3471–3480. doi: 10.1007/s11665-021-06464-y. DOI

Mittal A., Teotia M., Soni R.K., Mittal J. Applications of egg shell and egg shell membrane as adsorbents: A review. J. Mol. Liq. 2016;223:376–387. doi: 10.1016/j.molliq.2016.08.065. DOI

Daengprok W., Garnjanagoonchorn W., Mine Y. Fermented pork sausage fortified with commercial or hen eggshell calcium lactate. Meat Sci. 2002;62:199–204. doi: 10.1016/S0309-1740(01)00247-9. PubMed DOI

NatureWorks Resources. [(accessed on 26 June 2023)]. Available online: https://www.natureworksllc.com/resources?tags=fbf5e27a42144a05aaced0d2fdc23667.

Brdlík P., Borůvka M., Běhálek L., Lenfeld P. Biodegradation of Poly(Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope. Polymers. 2021;13:594. doi: 10.3390/polym13040594. PubMed DOI PMC

Koutsomitopoulou A.F., Bénézet J.C., Bergeret A., Papanicolaou G.C. Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder Technol. 2014;255:10–16. doi: 10.1016/j.powtec.2013.10.047. DOI

Manshor M.R., Anuar H., Aimi M.N.N., Fitrie M.I.A., Nazri W.B.W., Sapuan S.M., El-Shekeil Y.A., Wahit M.U. Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Mater. Des. 2014;59:279–286. doi: 10.1016/j.matdes.2014.02.062. DOI

Ramesh P., Prasad B.D., Narayana K.L. Effect of MMT Clay on Mechanical, Thermal and Barrier Properties of Treated Aloevera Fiber/PLA-Hybrid Biocomposites. Silicon. 2020;12:1751–1760. doi: 10.1007/s12633-019-00275-6. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...