Degradation of Polylactic Acid Polymer and Biocomposites Exposed to Controlled Climatic Ageing: Mechanical and Thermal Properties and Structure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843
Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Program Research, Development and Education
PubMed
37514367
PubMed Central
PMC10384364
DOI
10.3390/polym15142977
PII: polym15142977
Knihovny.cz E-zdroje
- Klíčová slova
- biocomposite, buckwheat husks, controlled climate ageing, degradation, egg shells, polylactic acid,
- Publikační typ
- časopisecké články MeSH
This paper deals with the study of the degradation of polylactic acid (PLA) material structures and biocomposite systems with a PLA matrix containing ground natural particulate waste fillers, buckwheat husks and egg shells. Waste fillers were used without difficult cleaning operations to describe the effect of the raw waste material on PLA. Biocomposites with raw waste materials are increasingly coming to the forefront in car interiors and packaging products. The prepared material systems were exposed to controlled climatic ageing simulating long-term solar radiation and cyclic outdoor conditions. The degradation of the biocomposite systems was evaluated via thermal (differential scanning calorimetry) and mechanical properties (tensile and flexural tests, Charpy impact toughness). In addition to evaluating the degradation of the material structures using standardized tests, the influence and effect of controlled climatic ageing was visually assessed using SEM images (electron microscopy) of the surfaces and fracture surfaces of the test specimens.
Zobrazit více v PubMed
Udayakumar G.P., Muthusamy S., Selvaganesh B., Sivarajasekar N., Rambabu K., Banat F., Sivamani S., Sivakumar N., Hosseini-Bandegharaei A., Show P.L. Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. J. Environ. Chem. Eng. 2021;9:105322. doi: 10.1016/j.jece.2021.105322. DOI
Tănase E.E., Râpă M., Popa O. Biopolymers based on renewable resources—A review; Proceedings of the International Conference Agriculture for Life, Life for Agriculture; Bucharest, Romania. 5–7 June 2014; pp. 5–7.
EUBIO_Admin EuBP_FS_What_Are_Bioplastics. European Bioplastics e.V.; Berlin, Germany: 2020.
Current Figures on the Bioplastics Market: IfBB Presents New Edition of “Biopolymers-Facts and Statistics”. IfBB-Institute for Bioplastics and Biocomposites. [(accessed on 27 June 2023)]. Available online: https://www.ifbb-hannover.de/en/press-release/current-figures-on-the-bioplastics-market-ifbb-presents-new-edition-of-biopolymers-facts-and-statistics.html.
Hamad K., Kaseem M., Yang H., Deri F., Ko Y. Properties and medical applications of polylactic acid: A review. Express Polym. Lett. 2015;9:435–455. doi: 10.3144/expresspolymlett.2015.42. DOI
Inkinen S., Hakkarainen M., Albertsson A.-C., Södergård A. From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors. Biomacromolecules. 2011;12:523–532. doi: 10.1021/bm101302t. PubMed DOI
MacDonald R.T., McCarthy S.P., Gross R.A. Enzymatic degradability of poly(lactide): Effects of chain stereochemistry and material crystallinity. Macromolecules. 1996;29:7356–7361. doi: 10.1021/ma960513j. DOI
Pang X., Zhuang X., Tang Z., Chen X. Polylactic acid (PLA): Research, development and industrialization. Biotechnol. J. 2010;5:1125–1136. doi: 10.1002/biot.201000135. PubMed DOI
Jin K., Tang Y., Zhu X., Zhou Y. Polylactic acid based biocomposite films reinforced with silanized nanocrystalline cellulose. Int. J. Biol. Macromol. 2020;162:1109–1117. doi: 10.1016/j.ijbiomac.2020.06.201. PubMed DOI
Abdelrahman M.S., Nassar S.H., Mashaly H., Mahmoud S., Maamoun D., Khattab T.A. Polymerization products of lactic acid as synthetic thickening agents for textile printing. J. Mol. Struct. 2020;1203:127421. doi: 10.1016/j.molstruc.2019.127421. DOI
Zhao X., Li J., Liu J., Zhou W., Peng S. Recent progress of preparation of branched poly(lactic acid) and its application in the modification of polylactic acid materials. Int. J. Biol. Macromol. 2021;193:874–892. doi: 10.1016/j.ijbiomac.2021.10.154. PubMed DOI
Murariu M., Dubois P. PLA composites: From production to properties. Adv. Drug Deliv. Rev. 2016;107:17–46. doi: 10.1016/j.addr.2016.04.003. PubMed DOI
Ögmundarson Ó., Sukumara S., Laurent A., Fantke P. Environmental hotspots of lactic acid production systems. GCB Bioenergy. 2020;12:19–38. doi: 10.1111/gcbb.12652. DOI
Auras R.A., Lim L.-T., Selke S.E., Tsuji H. Poly (Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2011.
Boisseau A., Davies P., Choqueuse D., Nellissen P., Peters L., Nickel R., Adolphs G., Renaud C., OCV O.C., Thiebaud F. Seawater Ageing of Composites for Ocean Energy Conversion Sytems; Proceedings of the ICCM-17th International Conference on Composite Materials; Edinburgh, UK. 27–31 July 2009.
Vu T., Nikaeen P., Chirdon W., Khattab A., Depan D. Improved Weathering Performance of Poly(Lactic Acid) through Carbon Nanotubes Addition: Thermal, Microstructural, and Nanomechanical Analyses. Biomimetics. 2020;5:61. doi: 10.3390/biomimetics5040061. PubMed DOI PMC
White C., White K.M., Pickett J. Service Life Prediction of Polymers and Plastics Exposed to Outdoor Weathering. William Andrew; Norwich, NY, USA: 2017.
Litauszki K., Kovács Z., Mészáros L., Kmetty Á. Accelerated photodegradation of poly(lactic acid) with weathering test chamber and laser exposure—A comparative study. Polym. Test. 2019;76:411–419. doi: 10.1016/j.polymertesting.2019.03.038. DOI
Ammala A., Bateman S., Dean K., Petinakis E., Sangwan P., Wong S., Yuan Q., Yu L., Patrick C., Leong K.H. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 2011;36:1015–1049. doi: 10.1016/j.progpolymsci.2010.12.002. DOI
Battegazzore D., Noori A., Frache A. Natural Wastes as Particle Filler for Poly(Lactic Acid)-Based Composites. J. Compos. Mater. 2019;53:783–797. doi: 10.1177/0021998318791316. DOI
Kumar B.A., Saminathan R., Tharwan M., Vigneshwaran M., Babu P.S., Ram S., Kumar P.M. Study on the mechanical properties of a hybrid polymer composite using egg shell powder based bio-filler. Mater. Today Proc. 2022;69:679–683. doi: 10.1016/j.matpr.2022.07.114. DOI
Jałbrzykowski M., Oksiuta Z., Obidziński S., Czyżewska U., Osiecki T., Kroll L., Yildiz M.J. Assessment of innovative PLA biopolymer compositions with plant waste fillers. Eng. Fail. Anal. 2022;139:106496. doi: 10.1016/j.engfailanal.2022.106496. DOI
Zemnukhova L.A., Shkorina E.D., Fedorishcheva G.A. Composition of Inorganic Components of Buckwheat Husk and Straw. Russ. J. Appl. Chem. 2005;78:324–328. doi: 10.1007/s11167-005-0284-1. DOI
Sivagnanamani G.S., Begum S.R., Siva R., Kumar M.S. Experimental Investigation on Influence of Waste Egg Shell Particles on Polylactic Acid Matrix for Additive Manufacturing Application. J. Mater. Eng. Perform. 2022;31:3471–3480. doi: 10.1007/s11665-021-06464-y. DOI
Mittal A., Teotia M., Soni R.K., Mittal J. Applications of egg shell and egg shell membrane as adsorbents: A review. J. Mol. Liq. 2016;223:376–387. doi: 10.1016/j.molliq.2016.08.065. DOI
Daengprok W., Garnjanagoonchorn W., Mine Y. Fermented pork sausage fortified with commercial or hen eggshell calcium lactate. Meat Sci. 2002;62:199–204. doi: 10.1016/S0309-1740(01)00247-9. PubMed DOI
NatureWorks Resources. [(accessed on 26 June 2023)]. Available online: https://www.natureworksllc.com/resources?tags=fbf5e27a42144a05aaced0d2fdc23667.
Brdlík P., Borůvka M., Běhálek L., Lenfeld P. Biodegradation of Poly(Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope. Polymers. 2021;13:594. doi: 10.3390/polym13040594. PubMed DOI PMC
Koutsomitopoulou A.F., Bénézet J.C., Bergeret A., Papanicolaou G.C. Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder Technol. 2014;255:10–16. doi: 10.1016/j.powtec.2013.10.047. DOI
Manshor M.R., Anuar H., Aimi M.N.N., Fitrie M.I.A., Nazri W.B.W., Sapuan S.M., El-Shekeil Y.A., Wahit M.U. Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Mater. Des. 2014;59:279–286. doi: 10.1016/j.matdes.2014.02.062. DOI
Ramesh P., Prasad B.D., Narayana K.L. Effect of MMT Clay on Mechanical, Thermal and Barrier Properties of Treated Aloevera Fiber/PLA-Hybrid Biocomposites. Silicon. 2020;12:1751–1760. doi: 10.1007/s12633-019-00275-6. DOI