The Influence of Additives and Environment on Biodegradation of PHBV Biocomposites

. 2022 Feb 21 ; 14 (4) : . [epub] 20220221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35215751

The biodegradation of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) ternary biocomposites containing nature-based plasticizer acetyl tributyl citrate (ATBC), heterogeneous nucleation agents-calcium carbonate (CaCO3) and spray-dried lignin-coated cellulose nanocrystals (L-CNC)-in vermicomposting, freshwater biotope, and thermophilic composting have been studied. The degree of disintegration, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and the evaluation of surface images taken by scanning electron microscopy (SEM) were conducted for the determination influence of different environments and additives on the biodegradation of PHBV. Furthermore, the method adapted from ISO 14855-1 standard was used for thermophilic composting. It is a method based on the measurement of the amount of carbon dioxide evolved during microbial degradation. The highest biodegradation rate was observed in the thermophilic condition of composting. The biodegradation level of all PHBV-based samples was, after 90 days, higher than 90%. Different mechanisms of degradation and consequently different degradation rate were evaluated in vermicomposting and freshwater biotope. The surface enzymatic degradation, observed during the vermicomposting process, showed slightly higher biodegradation potential than the hydrolytic attack of freshwater biotope. The application of ATBC plasticizers in the PHBV matrix caused an increase in biodegradation rate in all environments. However, the highest biodegradation rate was achieved for ternary PHBV biocomposites containing 10 wt. % of ATBC and 10 wt. % of CaCO3. A considerable increase in the degree of disintegration was evaluated, even in freshwater biotope. Furthermore, the slight inhibition effect of L-CNC on the biodegradation process of ternary PHBV/ATBC/L-CNC could be stated.

Zobrazit více v PubMed

Al-Delaimy W., Ramanathan V., Sánchez Sorondo M. Health of People, Health of Planet and Our Responsibility: Climate Change, Air Pollution and Health. Springer Nature; Berlin/Heidelberg, Germany: 2020.

Borrelle S.B., Ringma J., Law K.L., Monnahan C.C., Lebreton L., McGivern A., Murphy E., Jambeck J., Leonard G.H., Hilleary M.A. Predicted Growth in Plastic Waste Exceeds Efforts to Mitigate Plastic Pollution. J. Sci. 2020;369:1515–1518. doi: 10.1126/science.aba3656. PubMed DOI

Rhodes C.J. Plastic Pollution and Potential Solutions. Sci. Prog. 2018;101:207–260. doi: 10.3184/003685018X15294876706211. PubMed DOI PMC

Singh B.R., Singh O. Global Trends of Fossil Fuel Reserves and Climate Change in the 21st Century. Volume 8 InTech; Rijeka, Croatioa: 2012. Chapter 8.

Puntes V. Plastic-the Facts 2020. [Online]. B.m.: Plastic Europe Association of Plastic Manufactures. 2020. [(accessed on 10 January 2022)]. Available online: https://www.plasticseurope.org/en/resources/publications.

D’ambrières W. Plastics Recycling Worldwide: Current Overview and Desirable Changes. Actions Sci. Rep. 2019;19:12–21.

Calabrò P.S., Grosso M. Bioplastics and Waste Management. Waste Manag. 2018;78:800–801. doi: 10.1016/j.wasman.2018.06.054. PubMed DOI

Shen L., Haufe J., Patel M.K. Product Overview and Market Projection of Emerging Bio-Based Plastics. Utrecht Univ. Comm. Eur. Polysacch. Netw. Excell. Eur. Bioplast. 2009;243:1–245.

Guo M., Stuckey D.C., Murphy R.J. Is It Possible to Develop Biopolymer Production Systems Independent of Fossil Fuels? Case Study in Energy Profiling of Polyhydroxybutyrate-Valerate (PHBV) Green Chem. 2013;15:706–717. doi: 10.1039/c2gc36546d. DOI

Salomez M., George M., Fabre P., Touchaleaume F., Cesar G., Lajarrige A., Gastaldi E. A Comparative Study of Degradation Mechanisms of PHBV and PBSA under Laboratory-Scale Composting Conditions. Polym. Degrad. Stab. 2019;167:102–113. doi: 10.1016/j.polymdegradstab.2019.06.025. DOI

Conn R.E., Kolstad J.J., Borzelleca J.F., Dixler D.S., Filer L.J., Jr., LaDu B.N., Jr., Pariza M.W. Safety Assessment of Polylactide (PLA) for Use as a Food-Contact Polymer. Food Chemi. Toxicol. 1995;33:273–283. doi: 10.1016/0278-6915(94)00145-E. PubMed DOI

Jost V. Packaging Related Properties of Commercially Available Biopolymers–An Overview of the Status Quo. Express Polym. Lett. 2018;12:429–435. doi: 10.3144/expresspolymlett.2018.36. DOI

Grujić R., Vujadinović D., Savanović D. Advances in Applications of Industrial Biomaterials. Springer; Berlin/Heidelberg, Germany: 2017. Biopolymers as Food Packaging Materials; pp. 139–160.

Fabra M.J., López-Rubio A., Lagaron J.M. Smart Polymers and their Applications. Woodhead Publishing; Cambridge, UK: 2014. Biopolymers for Food Packaging Applications; pp. 476–509.

Steinbüchel A., Lütke-Eversloh T. Metabolic Engineering and Pathway Construction for Biotechnological Production of Relevant Polyhydroxyalkanoates in Microorganisms. Biochem. Eng. J. 2003;16:81–96. doi: 10.1016/S1369-703X(03)00036-6. DOI

Karak N. Vegetable Oil-Based Polymers: Properties, Processing and Applications. Volume 1 Woodhead Publishing Limited; New Delhi, India: 2012. Chapter 2.

Aitor L., Erlantz L. A Review on the Thermomechanical Properties and Biodegradation Behaviour of Polyester. Eur. Polym. J. 2019;121:1–31.

Meereboer K.W., Misra M., Mohanty A.K. Review of Recent Advances in the Biodegradability of Polyhydroxyalkanoate (PHA) Bioplastics and Their Composites. Green Chem. 2020;22:5519–5558. doi: 10.1039/D0GC01647K. DOI

Luo S., Netravali A.N. A Study of Physical and Mechanical Properties of Poly (Hydroxybutyrate-Co-Hydroxyvalerate) during Composting. Polym. Degradat. Stab. 2003;80:59–66. doi: 10.1016/S0141-3910(02)00383-X. DOI

Rutkowska M., Krasowska K., Heimowska A., Adamus G., Sobota M., Musioł M., Janeczek H., Sikorska W., Krzan A., Žagar E. Environmental Degradation of Blends of Atactic Poly [(R, S)-3-Hydroxybutyrate] with Natural PHBV in Baltic Sea Water and Compost with Activated Sludge. J. Polym. Environ. 2008;16:183–191. doi: 10.1007/s10924-008-0100-0. DOI

Tokiwa Y., Calabia B.P., Ugwu C.U., Aiba S. Biodegradability of Plastics. Int. J. Mol. Ssci. 2009;10:3722–3742. doi: 10.3390/ijms10093722. PubMed DOI PMC

Weng Y.-X., Wang X.-L., Wang Y.-Z. Biodegradation Behavior of PHAs with Different Chemical Structures under Controlled Composting Conditions. Polym. Test. 2011;30:372–380. doi: 10.1016/j.polymertesting.2011.02.001. DOI

Nair L.S., Laurencin C.T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017. DOI

Renard E., Walls M., Guérin P., Langlois V. Hydrolytic Degradation of Blends of Polyhydroxyalkanoates and Functionalized Polyhydroxyalkanoates. Polym. Degradat. Stab. 2004;85:779–787. doi: 10.1016/j.polymdegradstab.2003.11.019. DOI

Sevim K., Pan J. A Model for Hydrolytic Degradation and Erosion of Biodegradable Polymers. Acta Biomater. 2018;66:192–199. doi: 10.1016/j.actbio.2017.11.023. PubMed DOI

Herzog K., Müller R.-J., Deckwer W.-D. Mechanism and Kinetics of the Enzymatic Hydrolysis of Polyester Nanoparticles by Lipases. Polym. Degradat. Stab. 2006;91:2486–2498. doi: 10.1016/j.polymdegradstab.2006.03.005. DOI

Buchholz V., Agarwal S., Greiner A. Synthesis and Enzymatic Degradation of Soft Aliphatic Polyesters. Macromol. Biosci. 2016;16:207–213. doi: 10.1002/mabi.201500279. PubMed DOI

Mergaert J., Anderson C., Wouters A., Swings J., Kersters K. Biodegradation of Polyhydroxyalkanoates. FEMS Microbiol. Rev. 1992;9:317–321. doi: 10.1111/j.1574-6968.1992.tb05853.x. PubMed DOI

Weng Y.-X., Wang Y., Wang X.-L., Wang Y.-Z. Biodegradation Behavior of PHBV Films in a Pilot-Scale Composting Condition. Polym. Test. 2010;29:579–587. doi: 10.1016/j.polymertesting.2010.04.002. DOI

Siparsky G.L., Voorhees K.J., Dorgan J.R., Schilling K. Water Transport in Polylactic Acid (PLA), PLA/Polycaprolactone Copolymers, and PLA/Polyethylene Glycol Blends. J. Environ. Polym. Degrad. 1997;5:125–136.

Muniyasamy S., Ofosu O., John M.J., Anandjiwala R.D. Mineralization of Poly (Lactic Acid)(PLA), Poly (3-Hydroxybutyrate-Co-Valerate)(PHBV) and PLA/PHBV Blend in Compost and Soil Environments. J. Renew. Mater. 2016;4:133–145. doi: 10.7569/JRM.2016.634104. DOI

Chen H. Assessment of Biodegradation in Different Environmental Compartments of Blends and Composites Based on Microbial Poly (Hydroxyalkanoate)s. Pisa Univ. Pisa. 2012;ill:1–191.

Thellen C., Coyne M., Froio D., Auerbach M., Wirsen C., Ratto J.A. A Processing, Characterization and Marine Biodegradation Study of Melt-Extruded Polyhydroxyalkanoate (PHA) Films. J. Polym. Environ. 2008;16:1–11. doi: 10.1007/s10924-008-0079-6. DOI

Deroiné M., César G., Le Duigou A., Davies P., Bruzaud S. Natural Degradation and Biodegradation of Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) in Liquid and Solid Marine Environments. J. Polym. Environ. 2015;23:493–505. doi: 10.1007/s10924-015-0736-5. DOI

Yagi H., Ninomiya F., Funabashi M., Kunioka M. Thermophilic Anaerobic Biodegradation Test and Analysis of Eubacteria Involved in Anaerobic Biodegradation of Four Specified Biodegradable Polyesters. Polym. Degrad. Stab. 2013;98:1182–1187. doi: 10.1016/j.polymdegradstab.2013.03.010. DOI

Boonmee J., Kositanont C., Leejarkpa T. Biodegradation of Poly (Lactic Acid), Poly (Hydroxybutyrate-Co-Hydroxyvalerate), Poly (Butylene Succinate) and Poly (Butylene Adipate-Co-Terephthalate) under Anaerobic and Oxygen Limited Thermophilic Conditions. Environ. Asia. 2016;9:107–115.

Lammi S., Gastaldi E., Gaubiac F., Angellier-Coussy H. How Olive Pomace Can Be Valorized as Fillers to Tune the Biodegradation of PHBV Based Composites. Polym. Degrad. Stab. 2019;166:325–333. doi: 10.1016/j.polymdegradstab.2019.06.010. DOI

David G., Michel J., Gastaldi E., Gontard N., Angellier-Coussy H. How Vine Shoots as Fillers Impact the Biodegradation of PHBV-Based Composites. Int. J. Mol. Sci. 2020;21:228. doi: 10.3390/ijms21010228. PubMed DOI PMC

Meereboer K.W., Pal A.K., Cisneros-López E.O., Misra M., Mohanty A.K. The Effect of Natural Fillers on the Marine Biodegradation Behaviour of Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate)(PHBV) Sci. Rep. 2021;11:911. doi: 10.1038/s41598-020-78122-7. PubMed DOI PMC

Zhao X., Ji K., Kurt K., Cornish K., Vodovotz Y. Optimal Mechanical Properties of Biodegradable Natural Rubber-Toughened PHBV Bioplastics Intended for Food Packaging Applications. Food Packag. Shelf Life. 2019;21:100348. doi: 10.1016/j.fpsl.2019.100348. DOI

Zhang K., Mohanty A.K., Misra M. Fully Biodegradable and Biorenewable Ternary Blends from Polylactide, Poly (3-Hydroxybutyrate-Co-Hydroxyvalerate) and Poly (Butylene Succinate) with Balanced Properties. ACS Appl. Mater. Interfaces. 2012;4:3091–3101. doi: 10.1021/am3004522. PubMed DOI

Jacobsen S., Fritz H.-G. Plasticizing Polylactide—The Effect of Different Plasticizers on the Mechanical Properties. Polym. Eng. Sci. 1999;39:1303–1310. doi: 10.1002/pen.11517. DOI

Rahman M., Brazel C.S. The Plasticizer Market: An Assessment of Traditional Plasticizers and Research Trends to Meet New Challenges. Prog. Polym. Sci. 2004;29:1223–1248. doi: 10.1016/j.progpolymsci.2004.10.001. DOI

Vieira M.G.A., da Silva M.A., dos Santos L.O., Beppu M.M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011;47:254–263. doi: 10.1016/j.eurpolymj.2010.12.011. DOI

Jost V., Langowski H.-C. Effect of Different Plasticisers on the Mechanical and Barrier Properties of Extruded Cast PHBV Films. Eur. Polym. J. 2015;68:302–312. doi: 10.1016/j.eurpolymj.2015.04.012. DOI

Saeidlou S., Huneault M.A., Li H., Park C.B. Poly (Lactic Acid) Crystallization. Prog. Polym. Sci. 2012;37:1657–1677. doi: 10.1016/j.progpolymsci.2012.07.005. DOI

Wang X., Chen Z., Chen X., Pan J., Xu K. Miscibility, Crystallization Kinetics, and Mechanical Properties of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/Poly (3-hydroxybutyrate-co-4-hydroxybutyrate)(P3/4HB) Blends. J. Appl. Polym. Sci. 2010;117:838–848. doi: 10.1002/app.31215. DOI

Brdlík P., Borůvka M., Běhálek L., Lenfeld P. Biodegradation of Poly (Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope. J. Polym. 2021;13:594. doi: 10.3390/polym13040594. PubMed DOI PMC

Husarova L., Machovsky M., Gerych P., Houser J., Koutny M. Aerobic Biodegradation of Calcium Carbonate Filled Polyethylene Film Containing Pro-Oxidant Additives. Polym. Degrad. Stab. 2010;95:1794–1799. doi: 10.1016/j.polymdegradstab.2010.05.009. DOI

Aframehr W.M., Molki B., Heidarian P., Behzad T., Sadeghi M., Bagheri R. Effect of Calcium Carbonate Nanoparticles on Barrier Properties and Biodegradability of Polylactic Acid. Fibers Polym. 2017;18:2041–2048. doi: 10.1007/s12221-017-6853-0. DOI

Kale G., Kijchavengkul T., Auras R., Rubino M., Selke S.E., Singh S.P. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007;7:255–277. doi: 10.1002/mabi.200600168. PubMed DOI

Chong E.W.N., Jafarzadeh S., Paridah M.T., Gopakumar D.A., Tajarudin H.A., Thomas S., Abdul Khalil H.P.S. Enhancement in the Physico-Mechanical Functions of Seaweed Biopolymer Film via Embedding Fillers for Plasticulture Application—A Comparison with Conventional Biodegradable Mulch Film. J. Polym. 2019;11:210. PubMed PMC

Suharty N.S., Almanar I.P., Dihardjo K., Astasari N. Flammability, Biodegradability and Mechanical Properties of Bio-Composites Waste Polypropylene/Kenaf Fiber Containing Nano CaCO3 with Diammonium Phosphate. Procedia Chem. 2012;4:282–287. doi: 10.1016/j.proche.2012.06.039. DOI

Nekhamanurak Y.B., Patanathabutr P., Hongsriphan N. Mechanical Properties of Hydrophilicity Modified CaCO3-Poly (Lactic Acid) Nanocomposite. J. Appl. Phys. Math. 2012;2:98. doi: 10.7763/IJAPM.2012.V2.62. DOI

Nekhamanurak B., Patanathabutr P., Hongsriphan N. The Influence of Micro-/Nano-CaCO3 on Thermal Stability and Melt Rheology Behavior of Poly (Lactic Acid) Energy Procedia. 2014;56:118–128. doi: 10.1016/j.egypro.2014.07.139. DOI

Tuomela M., Vikman M., Hatakka A., Itävaara M. Biodegradation of Lignin in a Compost Environment: A Review. Bioresour. Technol. 2000;72:169–183. doi: 10.1016/S0960-8524(99)00104-2. DOI

Micales J.A., Skog K.E. The Decomposition of Forest Products in Landfills. Int. Biodeterior. Biodegrad. 1997;39:145–158. doi: 10.1016/S0964-8305(97)83389-6. DOI

Volova T.G., Gladyshev M.I., Trusova M.Y., Zhila N.O. Degradation of Polyhydroxyalkanoates in Eutrophic Reservoir. Polym. Degrad. Stab. 2007;92:580–586. doi: 10.1016/j.polymdegradstab.2007.01.011. DOI

Tsou C.-H., Suen M.-C., Yao W.-H., Yeh J.-T., Wu C.-S., Tsou C.-Y., Chiu S.-H., Chen J.-C., Wang R.Y., Lin S.-M. Preparation and Characterization of Bioplastic-Based Green Renewable Composites from Tapioca with Acetyl Tributyl Citrate as a Plasticizer. Materials. 2014;7:5617–5632. doi: 10.3390/ma7085617. PubMed DOI PMC

Maiza M., Benaniba M.T., Quintard G., Massardier-Nageotte V. Biobased Additive Plasticizing Polylactic Acid (PLA) Polimeros. 2015;25:581–590. doi: 10.1590/0104-1428.1986. DOI

Courgneau C., Domenek S., Guinault A., Avérous L., Ducruet V. Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly (Lactic Acid) J. Polym. Environ. 2011;19:362–371. doi: 10.1007/s10924-011-0285-5. DOI

Martino L., Berthet M.-A., Angellier-Coussy H., Gontard N. Understanding External Plasticization of Melt Extruded PHBV–Wheat Straw Fibers Biodegradable Composites for Food Packaging. J. Appl. Polym. Sci. 2015;132:41611. doi: 10.1002/app.41611. DOI

Kirboga S., Öner M. Oxygen Barrier and Thermomechanical Properties of Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Biocomposites Reinforced with Calcium Carbonate Particles. Acta Chim. Slov. 2020;67:137–150. doi: 10.17344/acsi.2019.5291. PubMed DOI

Kirboga S., Öner M. 6 th Icntc Book of Abstracts. ICNTC Secretariat; Istambul, Turkey: 2020. The Properties of Phbv/CaCO3 Composites Prepared By Melt Processing; p. 102.

Wang K.Y., Cao F. Effect of CaCO3 on Thermal and Crystalline Morphology Properties of Biodegradable PHBV. In Proceedings of the Advanced Materials Research. Trans. Tech. Publ. 2013;781:542–545.

Gupta A., Simmons W., Schueneman G.T., Mintz E.A. Lignin-Coated Cellulose Nanocrystals as Promising Nucleating Agent for Poly (Lactic Acid) J. Therm. Anal. Calorim. 2016;126:1243–1251. doi: 10.1007/s10973-016-5657-6. DOI

Borůvka M., Běhálek L., Novák J. Properties and Crystallization of PLLA Biopolymers with Cellulose Nanocrystals and Organic Plasticizer. MM Sci. J. 2020;2020:4080–4085. doi: 10.17973/MMSJ.2020_11_2020030. DOI

Liu T., Petermann J. Multiple Melting Behavior in Isothermally Cold-Crystallized Isotactic Polystyrene. Polymer. 2001;42:6453–6461. doi: 10.1016/S0032-3861(01)00173-2. DOI

Gunaratne L., Shanks R.A. Multiple Melting Behaviour of Poly (3-Hydroxybutyrate-Co-Hydroxyvalerate) Using Step-Scan DSC. Eur. Polym. J. 2005;41:2980–2988. doi: 10.1016/j.eurpolymj.2005.06.015. DOI

Erceg M., KovaČiĆ T., KlariĆ I. Thermal Degradation of Poly (3-Hydroxybutyrate) Plasticized with Acetyl Tributyl Citrate. Polym. Degrad. Stab. 2005;90:313–318. doi: 10.1016/j.polymdegradstab.2005.04.048. DOI

Zhang Y., Wang J., Fang X., Liao J., Zhou X., Zhou S., Bai F., Peng S. High Solid Content Production of Environmentally Benign Ultra-Thin Lignin-Based Polyurethane Films: Plasticization and Degradation. Polymer. 2019;178:121572. doi: 10.1016/j.polymer.2019.121572. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...