Mosquitoes in the Danube Delta: searching for vectors of filarioid helminths and avian malaria
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
28679443
PubMed Central
PMC5499018
DOI
10.1186/s13071-017-2264-8
PII: 10.1186/s13071-017-2264-8
Knihovny.cz E-zdroje
- Klíčová slova
- Avian malaria, Danube Delta, Filarioids, Mosquito vectors,
- MeSH
- Aedes klasifikace parazitologie MeSH
- Culex klasifikace parazitologie MeSH
- Culicidae klasifikace parazitologie MeSH
- Dirofilaria immitis genetika izolace a purifikace MeSH
- Dirofilaria repens genetika izolace a purifikace MeSH
- Filarioidea genetika izolace a purifikace MeSH
- filarióza epidemiologie parazitologie MeSH
- hmyz - vektory parazitologie MeSH
- lidé MeSH
- malárie ptačí epidemiologie parazitologie MeSH
- Plasmodium genetika izolace a purifikace MeSH
- psi MeSH
- Setaria (Nematoda) genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Rumunsko epidemiologie MeSH
BACKGROUND: Mosquitoes are arthropods of major importance to animal and human health because they are able to transmit pathogenic agents such as filarioids (Spirurida), vector-borne nematodes, which reside in the tissues of vertebrates. In Europe, recent research has mostly focused on mosquito-borne zoonotic species, while others remain neglected. Mosquitoes are also vectors of avian malaria, which has an almost worldwide distribution, and is caused by several Plasmodium species and lineages, the most common being P. relictum. The Danube Delta region of Romania is one of the most important stopover sites for migratory birds. The local mosquito fauna is diverse and well represented, while filarial infections are known to be endemic in domestic dogs in this area. The aim of the present study was thus to assess the potential vector capacity for various filarial helminths and avian malaria of mosquitoes trapped in the Danube Delta. METHODS: In July 2015, mosquitoes were collected at seven sites located in and around a rural locality in the Danube Delta region of Romania, using CO2-baited traps and hand aspirators. Additionally, a trap was placed next to a microfilaremic dog co-infected with Dirofilaria repens and D. immitis. All randomly trapped mosquitoes were identified to the species level and pooled according to date, sampling site, and taxon. Three hundred individual mosquitoes sampled next to the microfilaremic dog were processed individually and divided into abdomen and thorax/head. Following DNA extraction, all samples were screened for the presence of DNA of filarioid helminths and avian malaria agents by PCR techniques. RESULTS: All 284 pools (a total of 5855 mosquitoes) were negative for filarioid DNA. One pool of Culex modestus mosquitoes was positive for Plasmodium sp. lineage Donana03. In the individually extracted mosquitoes, one abdomen of Aedes vexans was positive for D. repens DNA, one thorax/head of Ae. vexans was positive for DNA of Setaria labiatopapillosa, and two thorax/head of Cx. pipiens f. pipiens were positive for P. relictum lineage pSGS1. CONCLUSION: The present study suggests the vector competence of Cx. modestus and Cx. pipiens for avian Plasmodium including pathogenic species P. relictum and Ae. vexans for mammalian filarioids. Moreover, it indicates the role of Cx. pipiens f. pipiens as a potential natural vector of P. relictum lineage pSGS1 in nature.
CEITEC VFU University of Veterinary and Pharmaceutical Sciences Brno Czech Republic
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Wilkerson RC, Linton Y-M, Fonseca DM, Schultz TR, Price DC, Strickman DA. Making mosquito taxonomy useful: a stable classification of tribe Aedini that balances utility with current knowledge of evolutionary relationships. PLoS One. 2015;10:e0133602. doi: 10.1371/journal.pone.0133602. PubMed DOI PMC
Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C, et al. Mosquitoes and their control. Berlin: Springer; 2010. p. 498.
Lemine AMM, Lemrabott MAO, Ebou MH, Lekweiry KM, Salem MSOA, Brahim KO, et al. Mosquitoes (Diptera: Culicidae) in Mauritania: a review of their biodiversity, distribution and medical importance. Parasit Vectors. 2017;10:35. doi: 10.1186/s13071-017-1978-y. PubMed DOI PMC
Prioteasa FL, Falcuta E. An annotated checklist of the mosquitoes (Diptera: Culicidae) of the Danube Delta biosphere reserve. Eur Mosq Bull. 2010;28:240–245.
Anderson RC. Nematode parasites of vertebrates, their development and transmission. 2. Wallingford, Oxon: CABI Publishing; 2000. pp. 467–532.
Bain O, Casiraghi M, Martin C, Uni S. The Nematoda Filarioidea: critical analysis linking molecular and traditional approaches. Parasite. 2008;15:342–348. doi: 10.1051/parasite/2008153342. PubMed DOI
Simón F, Siles-Lucas M, Morchón R, González-Miguel J, Mellado I, Carretón E, et al. Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clin Microbiol Rev. 2012;25:507–544. doi: 10.1128/CMR.00012-12. PubMed DOI PMC
Tarello W. Clinical aspects of dermatitis associated with Dirofilaria repens in pets: a review of 100 canine and 31 feline cases (1990–2010) and a report of a new clinic case imported from Italy to Dubai. J Parasitol Res. 2011;2011:578385. doi: 10.1155/2011/578385. PubMed DOI PMC
Laaksonen S, Kuusela J, Nikander S, Nylund M, Oksanen A. Outbreak of parasitic peritonitis in reindeer in Finland. Vet Rec. 2007;160:835–841. doi: 10.1136/vr.160.24.835. PubMed DOI
Cancrini G, Pietrobelli M, Frangipane Di Regalbono A, Tampieri MP. Mosquitoes as vectors of Setaria labiatopapillosa. Int J Parasitol. 1997;27:1061–1064. doi: 10.1016/S0020-7519(97)00081-7. PubMed DOI
Bino Sundar ST, D’Souza PE. Morphological characterization of Setaria worms collected from cattle. J Parasit Dis. 2015;39:572–576. doi: 10.1007/s12639-013-0399-x. PubMed DOI PMC
Ionică AM, Matei IA, Mircean V, Dumitrache MO, D'Amico G, Győrke A, et al. Current surveys on the prevalence and distribution of Dirofilaria spp. and Acanthocheilonema reconditum infections in dogs in Romania. Parasitol Res. 2015;114:975–982. doi: 10.1007/s00436-014-4263-4. PubMed DOI
Ionică AM, Matei IA, D’Amico G, Daskalaki AA, Juránková J, Ionescu DT, et al. Role of golden jackals (Canis aureus) as natural reservoirs of Dirofilaria spp. in Romania. Parasit Vectors. 2016;9:240. doi: 10.1186/s13071-016-1524-3. PubMed DOI PMC
Tudor P, Turcitu M, Mateescu C, Dantas-Torres F, Tudor N, Bărbuceanu F, et al. Zoonotic ocular onchocercosis caused by Onchocerca lupi in dogs in Romania. Parasitol Res. 2016;115:859–862. doi: 10.1007/s00436-015-4816-1. PubMed DOI
Ionică AM, D’Amico G, Mitková B, Kalmár Z, Annoscia G, Otranto D, et al. First report of Cercopithifilaria spp. in dogs from eastern Europe with an overview of their geographic distribution in Europe. Parasitol Res. 2014;113:2761–4. PubMed
Mateescu I. Spiroptic tumor of the stomach in a horse. Autopsy notes. Arh Vet. 1915;12:351–353.
Iliescu MG. Multiple cutaneous, subcutaneous and muscular hemorrhages in a horse caused by a massive infection with Filaria hemorragica. Arh Vet. 1923;17:116–119.
Pavlosievici A case of verminous ophtalmia in a horse. Consecutive cerebral congestion. Surgery. Healing. Arh Vet. 1924;18:26–28.
Vechiu A. A case of chylothorax in a horse, with the occurence of filariae in the liquid. Arh Vet. 1926;19:92–94.
Oprescu CA. On Onchocerca cervicalis in the horse and its importance in withers and neck disease. Arh Vet. 1943;35:3–13.
Pigeault R, Vézilier J, Cornet S, Zélé F, Nicot A, Perret P, et al. Avian malaria: a new lease of life for an old experimental model to study the evolutionary ecology of Plasmodium. Phil Trans R Soc B. 2015;370:20140300. doi: 10.1098/rstb.2014.0300. PubMed DOI PMC
Valkiūnas G, Žiegytė R, Palinauskas V, Bernotienė R, Bukauskaitė D, Ilgūnas M, et al. Complete sporogony of Plasmodium relictum (lineage pGRW4) in mosquitoes Culex pipiens pipiens, with implications on avian malaria epidemiology. Parasitol Res. 2015;114:3075–3085. doi: 10.1007/s00436-015-4510-3. PubMed DOI
Cornet S, Nicot A, Rivero A, Gandon S. Both infected and uninfected mosquitoes are attracted toward malaria infected birds. Malar J. 2013;12:179. doi: 10.1186/1475-2875-12-179. PubMed DOI PMC
Žiegytė R, Bernotienė R, Bukauskaitė D, Palinauskas V, Iezhova T, Valkiūnas G. Complete sporogony of Plasmodium relictum (lineages pSGS1 and pGRW11) in mosquito Culex pipiens pipiens form molestus, with implications to avian malaria epidemiology. J Parasitol. 2014;100:878–882. doi: 10.1645/13-469.1. PubMed DOI
Ferraguti M, Martínez-de la Puente J, Muñoz J, Roiz D, Ruiz S, Soriguer R, et al. Avian Plasmodium in Culex and Ochlerotatus mosquitoes from southern Spain: effects of season and host-feeding source on parasite dynamics. PLoS One. 2013;8:e66237. PubMed PMC
Zittra C, Kocziha Z, Pinnyei S, Harl J, Kieser K, Laciny A, et al. Screening blood-fed mosquitoes for the diagnosis of filarioid helminths and avian malaria. Parasit Vectors. 2015;8:16. doi: 10.1186/s13071-015-0637-4. PubMed DOI PMC
Hahn S, Bauer S, Liechti F. The natural link between Europe and Africa - 2.1 billion birds on migration. Oikos. 2009;118:624–626. doi: 10.1111/j.1600-0706.2008.17309.x. DOI
Hodžić A, Alić A, Fuehrer HP, Harl J, Wille-Piazzai W, Duscher GG. A molecular survey of vector-borne pathogens in red foxes (Vulpes vulpes) from Bosnia and Herzegovina. Parasit Vectors. 2015;8:88. doi: 10.1186/s13071-015-0692-x. PubMed DOI PMC
Hellgren O, Waldenström J, Bensch S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol. 2004;90:797–802. doi: 10.1645/GE-184R1. PubMed DOI
http://mbio-serv2.mbioekol.lu.se/Malavi/. Accessed 3 June 2017.
Bahnck CM, Fonseca DM. Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. Am J Trop Med Hyg. 2006;75:251–255. doi: 10.4269/ajtmh.2006.75.251. PubMed DOI
Smith JL, Fonseca DM. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae) Am J Trop Med Hyg. 2004;70:339–345. PubMed
Zittra C, Flechl E, Kothmayer M, Vitecek S, Rossiter H, Zechmeister T, et al. Ecological characterization and molecular differentiation of Culex pipiens Complex taxa and Culex torrentium in eastern Austria. Parasit Vectors. 2016;9:197. doi: 10.1186/s13071-016-1495-4. PubMed DOI PMC
Török E, Tomazatos A, Cadar D, Horváth C, Keresztes L, Jansen S, et al. Pilot longitudinal mosquito surveillance study in the Danube Delta biosphere reserve and the first reports of Anopheles algeriensis Theobald, 1903 and Aedes hungaricus Mihályi, 1955 for Romania. Parasit Vectors. 2016;9:196. doi: 10.1186/s13071-016-1484-7. PubMed DOI PMC
Cancrini G, Magi M, Gabrielli S, Arispici M, Tolari F, Dell'Omodarme M, et al. Natural vectors of dirofilariasis in rural and urban areas of the Tuscan region, central Italy. J Med Entomol. 2006;43:574–579. doi: 10.1093/jmedent/43.3.574. PubMed DOI
Capelli G, Frangipane di Regalbono A, Simonato G, Cassini R, Cazzin S, Cancrini G, et al. Risk of canine and human exposure to Dirofilaria immitis infected mosquitoes in endemic areas of Italy. Parasit Vectors. 2013;6:60. PubMed PMC
Czajka C, Becker N, Poppert S, Jöst H, Schmidt-Chanasit J, Krüger A. Molecular detection of Setaria tundra (Nematoda: Filarioidea) and an unidentified filarial species in mosquitoes in Germany. Parasit Vectors. 2012;5:14. doi: 10.1186/1756-3305-5-14. PubMed DOI PMC
Latrofa MS, Montarsi F, Ciocchetta S, Annoscia G, Dantas-Torres F, Ravagnan S, et al. Molecular xenomonitoring of Dirofilaria immitis and Dirofilaria repens in mosquitoes from north-eastern Italy by real-time PCR coupled with melting curve analysis. Parasit Vectors. 2012;5:76. doi: 10.1186/1756-3305-5-76. PubMed DOI PMC
Kronefeld M, Kampen H, Sassnau R, Werner D. Molecular detection of Dirofilaria immitis, Dirofilaria repens and Setaria tundra in mosquitoes from Germany. Parasit Vectors. 2014;7:30. PubMed PMC
Rudolf I, Šebesta O, Mendel J, Betášová L, Bocková E, Jedličková P, et al. Zoonotic Dirofilaria repens (Nematoda: Filarioidea) in Aedes vexans mosquitoes, Czech Republic. Parasitol Res. 2014;113:4663–7. PubMed
Bocková E, Iglódyová A, Kočišová A. Potential mosquito (Diptera: Culicidae) vector of Dirofilaria repens and Dirofilaria immitis in urban areas of eastern Slovakia. Parasitol Res. 2015;114:4487–4492. doi: 10.1007/s00436-015-4692-8. PubMed DOI
Kemenesi G, Kurucz K, Kepner A, Dallos B, Oldal M, Herczeg R, et al. Circulation of Dirofilaria repens, Setaria tundra, and Onchocercidae species in Hungary during the period 2011-2013. Vet Parasitol. 2015;214:108–113. doi: 10.1016/j.vetpar.2015.09.010. PubMed DOI
Șuleșco T, von Thien H, Toderaș L, Toderaș I, Lühken R, Tannich E. Circulation of Dirofilaria repens and Dirofilaria immitis in Moldova. Parasit Vectors. 2016;6:27. PubMed PMC
Masny A, Sałamatin R, Rozej-Bielicka W, Golab E. Is molecular xenomonitoring of mosquitoes for Dirofilaria repens suitable for dirofilariosis surveillance in endemic regions? Parasitol Res. 2016;115:511–525. doi: 10.1007/s00436-015-4767-6. PubMed DOI
Favia G, Lanfrancotti A, Della Torre A, Cancrini G, Coluzzi M. Advances in the identification of Dirofilaria repens and Dirofilaria immitis by a PCR-based approach. Parassitologia. 1997;39:401–402. PubMed
Favia G, Lanfrancotti A, Della Torre A, Cancrini G, Coluzzi M. Polymerase chain reaction identification of Dirofilaria repens and Dirofilaria immitis. Parasitology. 1996;113:567–571. doi: 10.1017/S0031182000067615. PubMed DOI
Pollono F, Cancrini G, Rossi L. Survey on Culicidae attracted to bait dog in piedmont. Parassitologia. 1998;40:439–445. PubMed
Pietrobelli M, Cancrini G, Capelli G, Frangipane di Regalbono A. Potential vector for canine and human dirofilariosis in north eastern Italy. Parassitologia. 2000;42(Suppl 1):105.
Panaitescu D, Preda A, Bain O, Vasile-Bugarin AC. Four cases of human filariosis due to Setaria labiatopapillosa found in Bucharest, Romania. Roum Arch Microbiol Immunol. 1999;58:203–7. PubMed
Nelson GS. Observations on the development of Setaria labiatopapillosa using new techniques for infecting Aedes aegypti with this nematode. J Helmithol. 1962;36:281–296. doi: 10.1017/S0022149X00023956. PubMed DOI
Pietrobelli M, Cancrini G, Frangipane di Regalbono A, Galuppi R, Tampieri MP. Development of Setaria labiatopapillosa in Aedes caspius. Med Vet Enomol. 1998;12:106–8. PubMed
Ventim R, Ramos JA, Osório H, Lopes RJ, Pérez-Tris J, Mendes L. Avian malaria infections in western European mosquitoes. Parasitol Res. 2012;111:637–645. doi: 10.1007/s00436-012-2880-3. PubMed DOI
Lalubin F, Delédevant A, Glaizot O, Christe P. Temporal changes in mosquito abundance (Culex pipiens), avian malaria prevalence and lineage composition. Parasit Vectors. 2013;6:307. doi: 10.1186/1756-3305-6-307. PubMed DOI PMC
Martínez-de la Puente J, Muñoz J, Capelli G, Montarsi F, Soriguer R, Arnoldi D, et al. Avian malaria parasites in the last supper: identifying encounters between parasites and the invasive Asian mosquito tiger and native mosquito species in Italy. Malar J. 2015;14:32. doi: 10.1186/s12936-015-0571-0. PubMed DOI PMC
An unexpected diversity of trypanosomatids in fecal samples of great apes