Fungi harboring lignocellulolytic activity accelerate the composting process of agricultural wastes; however, using thermophilic fungal isolates for this process has been paid little attention. Moreover, exogenous nitrogen sources may differently affect fungal lignocellulolytic activity. A total of 250 thermophilic fungi were isolated from local compost and vermicompost samples. First, the isolates were qualitative assayed for ligninase and cellulase activities using Congo red (CR) and carboxymethyl cellulose (CMC) as substrates, respectively. Then, twenty superior isolates harboring higher ligninase and cellulase activities were selected and quantitatively assayed for both enzymes in basic mineral (BM) liquid medium supplemented with the relevant substrates and nitrogen sources including (NH4)2SO4 (AS), NH4NO3 (AN), urea (U), AS + U (1:1), or AN + U (1:1) with final nitrogen concentration of 0.3 g/L. The highest ligninase activities of 99.94, 89.82, 95.42, 96.25, and 98.34% of CR decolorization were recorded in isolates VC85, VC94, VC85, C145, and VC85 in the presence of AS, U, AS + U, AN, and AN + U, respectively. Mean ligninase activity of 63.75% in superior isolates was achieved in the presence of AS and ranked the highest among other N compounds. The isolates C200 and C184 exhibited the highest cellulolytic activity in the presence of AS and AN + U by 8.8 and 6.5 U/ml, respectively. Mean cellulase activity of 3.90 U/mL was achieved in AN + U and ranked the highest among other N compounds. Molecular identification of twenty superior isolates confirmed that all of them are belonging to Aspergillus fumigatus group. Focusing on the highest ligninase activity of the isolate VC85 in the presence of AS, the combination can be recommended as a potential bio-accelerator for compost production.
- MeSH
- Cellulase * MeSH
- Nitrogen MeSH
- Fungi MeSH
- Composting * MeSH
- Oxygenases * MeSH
- Publication type
- Journal Article MeSH
The present study was focused on vermicomposting of spent coffee grounds (SCG) and its mixtures with straw pellets. The process was evaluated in terms of biological and physico-chemical properties. The greatest number and biomass of earthworms was found in the treatment with 25% vol. SCG + 75% vol. straw pellets. In this treatment, the upper youngest layer exhibited 1.6-fold and 4.5-fold greater earthworm number and biomass, respectively, than the bottom oldest layer. Earthworm weight decreased in direct proportion to the layer age. The oldest treatment layer was characterized by lesser contents of fungi and six hydrolytic enzymes, compared to the younger layers. Further, the oldest treatment layer had suitable agrochemical properties. Earthworms were able to substantially reduce the caffeine stimulant content, which is considered the most representative pharmaceutically active compound.
- MeSH
- Coffee * MeSH
- Composting * MeSH
- Publication type
- Journal Article MeSH
World mushroom production in 2018 was approximately 8.99 million tonnes. The most commonly cultivated species in the Czech Republic are Agaricus spp., which are sold fresh or canned. In 2017, 2018 mushroom production in the Czech Republic was approximately 540 tonnes. Vermicomposting is an easy and less ecologically harmful way to process the spent mushroom substrate. Earthworms, which are referred to as the engine of the process of vermicomposting, and microorganisms, help convert organic waste into fertilizer. This study is concerned with laboratory vermicomposting in a system of continuous feeding of earthworms Eisenia andrei. It compares the differences between variants with and without earthworms. The dry matter percentage was approximately 20% or more in both variants. The variant with earthworms showed a significant decrease in electrical conductivity. The C/N ratio was very low in both variants. The highest total P was recorded in the variant with earthworms, but the highest values of K and Mg were found in the control. Both variants recorded higher content of bacteria than fungi. All values of microorganism contents were higher in the vermicomposter without earthworms, but the bacterial/fungal ratio was higher in the variant with earthworms. The highest content in both variants shows the bacteria especially G-bacteria, on the other side, the lowest content shows the actinobacteria. The highest activity of β-D-glucosidase and acid phosphatase was measured in the vermicomposter with earthworms, but the activity of other enzymes was higher in the control. In both vermicomposters laccase activity was below the detection limit. The method of classical vermicomposting can be used for processing the spent mushroom substrate. However, in terms of higher content of total and available nutrients, there seems to be a better method of processing the substrate without earthworms.
- MeSH
- Agaricus * MeSH
- Bacteria MeSH
- Fungi MeSH
- Oligochaeta * MeSH
- Soil MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
Malting sludge is waste that could be used as a good soil conditioner after proper treatment. In the current study, the feasibility of vermicomposting malting sludge and its mixtures with straw pellets on the basis of physico-chemical and biological properties was verified. A vermicomposting system with continuous feeding of earthworms Eisenia andrei was used. The greatest number and biomass of earthworms was found in the variant with 25% malt house sludge + 75% straw pellets (on average of all layers: 320 earthworms/kg and 35 g/kg, respectively), followed by a variant with 50% malt house sludge + 50% straw pellets (on average of all layers: 47 earthworms/kg and 13 g/kg, respectively), indicating that a minimum of 50% (vol.) straw pellets is necessary for successful vermicomposting of malting sludge. Most earthworms lived in the youngest upper layer (42% and 52% of total number and earthworm biomass, respectively). On the contrary, the oldest bottom layers (final vermicomposts) after 180 days of vermicomposting were characterized by maturity, indicating lesser contents of microorganisms and enzyme activity. These vermicomposts had favorable agrochemical properties (pH = 7.8, EC = 1.2 mS cm-1, C/N = 11, Ptot = 1.23%, Ktot = 2.55%, Mgtot = 0.42%). The proportion of the available contents in the total contents were 10%, 59%, and 19% for P, K, and Mg, respectively.
Vermicomposting is a process by which earthworms together with microorganisms degrade organic wastes into a humus-like material called vermicompost. This process does not include a thermophilic stage, and therefore, the possible presence of pathogens represents a potential health hazard. To elucidate the effect of earthworms in the selective reduction of pathogens, grape marc substrate was artificially inoculated with Escherichia coli, Enterococcus spp., thermotolerant coliform bacteria (TCB), and Salmonella spp., and their reduction during vermicomposting was monitored. Various defense mechanisms eliminating microorganisms in the earthworm gut were assumed to be involved in the process of pathogen reduction. Therefore, we followed the expression of three pattern recognition receptors (coelomic cytolytic factor (CCF), lipopolysaccharide-binding protein (LBP), and Toll-like receptor (v-TLR)), two antimicrobial molecules (fetidin/lysenins and lysozyme), and heat shock protein HSP70. We detected the significant decrease of some defense molecules (fetidin/lysenins and LBP) in all pathogen-inoculated substrates, and the increase of CCF and LBP in the Salmonella spp.-inoculated substrate. At the same time, the reduction of pathogens during vermicomposting was assessed. We observed the accelerated reduction of E. coli, Enterococcus spp., and TCB in pathogen-inoculated substrates with earthworms compared to that without earthworms. Moreover, the differences between the microbiome of grape marc substrate and earthworm intestines were determined by high throughput sequencing. This analysis revealed that the bacterial composition of grape marc substrate differed from the composition of the content of earthworm intestines, suggesting the elimination of specific bacterial species during food passage through the gut.
- MeSH
- Bacteria MeSH
- Escherichia coli MeSH
- Microbiota * MeSH
- Oligochaeta * MeSH
- Soil MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The increasing numbers of kept horses create problems with processing horse manure as important local waste. This work was focused on horse manure vermicomposting in a real-field continuous-feeding system under controlled conditions, and on the complex study of the maturity and stability of the produced vermicompost. Commonly used simple indicators such as the C/N ratio, N-NH4+/N-NO3- ratio, DOC or ion exchange capacity, and also more advanced spectroscopic and thermoanalytic techniques were used and applied on the humic substances isolated from the vermicompost during its maturation (12 months in total). When compared with the original horse manure, vermicomposting decreased the aliphatic, protein-like, and polysaccharide humic components, whereas vermicomposting increased the aromaticity and contents of oxygen-containing functional groups. The typical tryptophan-like fluorophores in the manure, corresponding to the freshly produced organic matter of biological or microbial origin, were progressively transformed to humic-like fluorophores during vermicomposting. The most thermally labile humic fraction disappeared quickly during the very early vermicomposting stages. The results of spectroscopic and thermogravimetric analyses suggest that stable and mature vermicompost was produced after 6-9 months of vermicomposting, which was also supported by biologically-based maturity indicators.
The establishment of phytoextraction crops on highly contaminated soils can be limited by metal toxicity. A recent proposal has suggested establishing support crops during the critical initial phase by metal immobilization through soil amendments followed by subsequent mobilization using elemental sulphur to enhance phytoextraction efficiency. This 'combined phytoremediation' approach is tested for the first time in a pot experiment with a highly contaminated soil. During a 14-week period, relatively metal-tolerant maize was grown in a greenhouse under immobilization (before sulphur (S) application) and mobilization (after S application) conditions with soil containing Cd, Pb and Zn contaminants. Apart from the control (C) sample, the soil was amended with activated carbon (AC), lignite (Lig) or vermicompost (VC) all in two different doses (dose 1~45 g additive kg-1 soil and dose 2~90 g additive kg-1 soil). Elemental S was added as a mobilization agent in these samples after 9 weeks. Biomass production, nutrient and metal bioavailability in the soil were determined, along with their uptake by plants and the resulting remediation factors. Before S application, Cd and Zn mobility was reduced in all the AC, Lig and VC treatments, while Pb mobility was increased only in the Lig1 and VC1 treatments. Upon sulphur application, Fe, Mn, Cd, Pb and Zn mobility was not significantly affected in the C, AC and VC treatments, nor total Cd, Pb and Zn contents in maize shoots. Increased sulphate, Mn, Cd, Pb and Zn mobilities in soil together with related higher total S, Mn, Pb and Zn contents in shoots were observed in investigated treatments in the last sampling period. The highest biomass production and the lowest metal toxicity were seen in the VC treatments. These results were associated with effective metal immobilization and showed the trend of steady release of some nutrients. The highest remediation factors and total elemental content in maize shoots were recorded in the VC treatments. This increased phytoremediation efficiency by 400% for Cd and by 100% for Zn compared to the control. Considering the extreme metal load of the soil, it might be interesting to use highly metal-tolerant plants in future research. Future investigations could also explore the effect of carbonaceous additives on S oxidation, focusing on the specific microorganisms and redox reactions in the soil. In addition, the homogeneous distribution of the S rate in the soil should be considered, as well as longer observation times.
- MeSH
- Biodegradation, Environmental MeSH
- Biological Availability MeSH
- Biomass MeSH
- Charcoal chemistry MeSH
- Phosphorus pharmacokinetics MeSH
- Composting MeSH
- Zea mays drug effects growth & development metabolism MeSH
- Soil Pollutants analysis pharmacokinetics MeSH
- Soil chemistry MeSH
- Environmental Restoration and Remediation methods MeSH
- Sulfur * pharmacokinetics MeSH
- Metals, Heavy analysis pharmacokinetics MeSH
- Plant Shoots drug effects metabolism MeSH
- Publication type
- Journal Article MeSH
One of the possible ways to improve the operation efficiency of constructed wetlands and to prevent their clogging is the application of earthworms. They have already been successfully applied for vermicomposting and for sludge dewatering and treatment. A few studies have already examined the effect of earthworms on the treatment of wastewater by vertical flow constructed wetlands (VFCWs), but none of them have provided a yearlong research result from an open-air system or compared the effect that different seasons in a temperate climate area can have on these invertebrates. The goal of this research was to estimate the effect that earthworms and plants have on VFCW's operation. Four mesocosms (a filter, a filter with earthworms, a VFCW and a VFCW with earthworms) were built and their influent and effluent water quality was monitored for a period of 1 year. They were fed with wastewater coming from a building of the University of Bologna (Italy). The results have shown that the presence of earthworms in this specific system did not reduce the organic matter content of the substrate, but it has positively influenced plants' growth. However, since neither earthworms nor plants had a statistically significant effect on the effluent quality, it can be concluded that the integration of these invertebrates cannot improve wastewater treatment of vertical flow filters or constructed wetlands.
- MeSH
- Water Quality MeSH
- Wetlands MeSH
- Waste Disposal, Fluid methods MeSH
- Wastewater chemistry MeSH
- Sewage MeSH
- Oligochaeta physiology MeSH
- Universities MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Italy MeSH
An experiment was established to compare composting and vermicomposting for decreasing the content of polycyclic aromatic hydrocarbons (PAHs) in biomass fly ash incorporated into organic waste mixtures. PAH removal from the ash-organic waste mixture was compared to the same mixture spiked with PAHs. The removal of 16 individual ash PAHs ranged between 28.7 and 98.5% during the 240 day experiment. Greater dissipation of total PAH content of ash origin was observed at the end of composting (84.5%) than after the vermicomposting (61.6%). Most ash PAHs were removed similarly to spiked PAHs through the composting and vermicomposting processes. Higher manganese peroxidase in composting treatments indicated increased activity of ligninolytic PAH-degrading microorganisms. 3D models of total PAH removal were parametrized using the polarity index and organic matter content, and paraboloid equations for each treatment were estimated (all R2 > 0.91). A two-phase model of pseudo-first order kinetics analysis showed faster PAH removal by higher rate constants during the first 120 days of the experiment. The compost and vermicompost produced from the bioremediation treatments are usable as soil organic amendments.
- MeSH
- Biodegradation, Environmental * MeSH
- Biomass * MeSH
- Kinetics MeSH
- Composting * MeSH
- Soil Pollutants analysis MeSH
- Lipase chemistry MeSH
- Sewage analysis MeSH
- Oligochaeta MeSH
- Peroxidases chemistry MeSH
- Polycyclic Aromatic Hydrocarbons chemistry MeSH
- Coal Ash MeSH
- Soil MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The main by-product of wine-making is grape marc. With proper treatment, grape marc may return to the vineyard as a fertiliser. This study deals with the vermicomposting of grape marc in a continuous feeding system in outdoor conditions for more than 12 months. The N-NH4+, dissolved organic carbon (DOC), and N-NH4+/N-NO3- contents were greater in the top layers. The pH value was about 8 in all the layers. The electrical conductivity was the greatest in the bottom layer. The ion-exchange capacity did not modify significantly during vermicomposting. The microbial biomass was the greatest in the upper layer, as well as the number and the biomass of the earthworms. The process of vermicomposting seems to be an ideal way of processing residues from the winemaking industry. This vermicompost has very good properties for use as a fertiliser, and for returning the nutrients and organic matter to the soil, for example, in a vineyard.