The Physical Properties and Crystallization Kinetics of Biocomposite Films Based on PLLA and Spent Coffee Grounds
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36556716
PubMed Central
PMC9785839
DOI
10.3390/ma15248912
PII: ma15248912
Knihovny.cz E-resources
- Keywords
- biocomposites, itaconic anhydride, plasticizer, poly(L-lactic acid), spent coffee grounds,
- Publication type
- Journal Article MeSH
In the context of today's needs for environmental sustainability, it is important to develop new materials that are based on renewable resources and biodegrade at the end of their life. Bioplastics reinforced by agricultural waste have the potential to cause a revolution in many industrial applications. This paper reports the physical properties and crystallization kinetics of biocomposite films based on poly(L-lactic acid) (PLLA) and 10 wt.% of spent coffee grounds (SCG). To enhance adhesion between the PLLA matrix and SCG particles, a compatibilizing agent based on itaconic anhydride (IA)-grafted PLLA (PLLA-g-IA) was prepared by reactive extrusion using dicumyl peroxide (DCP). Furthermore, due to the intended application of the film in the packaging industry, the organic plasticizer acetyl tributyl citrate (ATBC) is used to improve processing and increase ductility. The crystallization behavior and thermal properties were observed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Crystallinity degree increased from 3,5 (neat PLLA) up to 48% (PLLA/PLLA-g-IA/ATBC/SCG) at the highest cooling rate. The physical properties were evaluated by tensile testing and dynamic mechanical analysis (DMA). The combination of the compatibilizer, SCG, and ATBC led to a synergistic effect that positively influenced the supramolecular structure, internal damping, and overall ductility of the composite films.
See more in PubMed
Mülhaupt R. Catalytic Polymerization and Post Polymerization Catalysis Fifty Years After the Discovery of Ziegler’s Catalysts. Macromol. Chem. Phys. 2003;204:289–327. doi: 10.1002/macp.200290085. DOI
Philp J.C., Ritchie R.J., Guy K. Biobased Plastics in a Bioeconomy. Trends Biotechnol. 2013;31:65–67. doi: 10.1016/j.tibtech.2012.11.009. PubMed DOI
Barker T., Bashmakov I., Bernstein L., Bogner J., Bosch P., Dave R., Davidson O., Fisher B., Grubb M., Gupta S. Climate Change 2007: Mitigation. In Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK: 2007. Technical Summary.
La Mantia F., Morreale M. Green Composites: A Brief Review. Compos. Part A Appl. Sci. Manuf. 2011;42:579–588. doi: 10.1016/j.compositesa.2011.01.017. DOI
Moshood T.D., Nawanir G., Mahmud F., Mohamad F., Ahmad M.H., Abdul Ghani A. Expanding Policy for Biodegradable Plastic Products and Market Dynamics of Bio-Based Plastics: Challenges and Opportunities. Sustainability. 2021;13:6170. doi: 10.3390/su13116170. DOI
EUBIO_Admin Market. European Bioplastics e.V.
Farah S., Anderson D.G., Langer R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016;107:367–392. doi: 10.1016/j.addr.2016.06.012. PubMed DOI
Auras R., Harte B., Selke S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004;4:835–864. doi: 10.1002/mabi.200400043. PubMed DOI
Mochizuki M. Textile Applications. Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2022. pp. 619–629.
Muller J., González-Martínez C., Chiralt A. Poly (Lactic) Acid (PLA) and Starch Bilayer Films, Containing Cinnamaldehyde, Obtained by Compression Moulding. Eur. Polym. J. 2017;95:56–70. doi: 10.1016/j.eurpolymj.2017.07.019. DOI
Rasselet D., Caro-Bretelle A.-S., Taguet A., Lopez-Cuesta J.-M. Reactive Compatibilization of PLA/PA11 Blends and Their Application in Additive Manufacturing. Materials. 2019;12:485. doi: 10.3390/ma12030485. PubMed DOI PMC
Sin L.T. Polylactic Acid: PLA Biopolymer Technology and Applications. William Andrew; Norwich, NY, USA: 2012.
Zengwen C., Pan H., Chen Y., Bian J., Han L., Zhang H., Dong L., Yang Y. Transform Poly (Lactic Acid) Packaging Film from Brittleness to Toughness Using Traditional Industrial Equipments. Polymer. 2019;180:121728. doi: 10.1016/j.polymer.2019.121728. DOI
Tábi T., Ageyeva T., Kovács J.G. Improving the Ductility and Heat Deflection Temperature of Injection Molded Poly (Lactic Acid) Products: A Comprehensive Review. Polym. Test. 2021;101:107282. doi: 10.1016/j.polymertesting.2021.107282. DOI
Salmerón Sánchez M., Mathot V.B.F., Vanden Poel G., Gómez Ribelles J.L. Effect of the Cooling Rate on the Nucleation Kinetics of Poly(l-Lactic Acid) and Its Influence on Morphology. Macromolecules. 2007;40:7989–7997. doi: 10.1021/ma0712706. DOI
Aitor L., Erlantz L. Review on the Thermomechanical Properties and Biodegradation Behaviour of Polyester. Eur. Polym. J. 2019;121:1–31.
Yang Y., Zhang L., Xiong Z., Tang Z., Zhang R., Zhu J. Research Progress in the Heat Resistance, Toughening and Filling Modification of PLA. Sci. China Chem. 2016;59:1355–1368. doi: 10.1007/s11426-016-0222-7. DOI
Ramot Y., Haim-Zada M., Domb A.J., Nyska A. Biocompatibility and Safety of PLA and Its Copolymers. Adv. Drug Deliv. Rev. 2016;107:153–162. doi: 10.1016/j.addr.2016.03.012. PubMed DOI
Fortelny I., Ujcic A., Fambri L., Slouf M. Phase Structure, Compatibility, and Toughness of PLA/PCL Blends: A Review. Front. Mater. 2019;6:206. doi: 10.3389/fmats.2019.00206. DOI
Choi K., Choi M.-C., Han D.-H., Park T.-S., Ha C.-S. Plasticization of Poly (Lactic Acid)(PLA) through Chemical Grafting of Poly (Ethylene Glycol)(PEG) via in Situ Reactive Blending. Eur. Polym. J. 2013;49:2356–2364. doi: 10.1016/j.eurpolymj.2013.05.027. DOI
Murariu M., Dubois P. PLA Composites: From Production to Properties. Adv. Drug Deliv. Rev. 2016;107:17–46. doi: 10.1016/j.addr.2016.04.003. PubMed DOI
Maiza M., Benaniba M.T., Quintard G., Massardier-Nageotte V. Biobased Additive Plasticizing Polylactic Acid (PLA) Polimeros. 2015;25:581–590. doi: 10.1590/0104-1428.1986. DOI
Dartora P.C., da Rosa Loureiro M., de Camargo Forte M.M. Crystallization Kinetics and Morphology of Poly (Lactic Acid) with Polysaccharide as Nucleating Agent. J. Therm. Anal. Calorim. 2018;134:1705–1713. doi: 10.1007/s10973-018-7744-3. DOI
Battegazzore D., Bocchini S., Frache A. Crystallization Kinetics of Poly (Lactic Acid)-Talc Composites. Express Polym. Lett. 2011;5:849–858. doi: 10.3144/expresspolymlett.2011.84. DOI
Terroba-Delicado E., Fiori S., Torres-Giner S., Gomez-Caturla J., Montanes N., Sanchez-Nacher L. Improving the Mechanical Ductility and Toughness of Injection-Molded Polylactide Pieces by the Dual Incorporation of Liquor Waste Derived Spent Coffee Grounds and Oligomers of Lactic Acid. [(accessed on 20 November 2022)]. 2 November 2021. Preprint (Version 1) Available online: https://assets.researchsquare.com/files/rs-1035447/v1/97b0a683-ae91-4208-92fc-0b971337b616.pdf?c=1648436444. PubMed DOI
Gupta A., Simmons W., Schueneman G.T., Mintz E.A. Lignin-Coated Cellulose Nanocrystals as Promising Nucleating Agent for Poly (Lactic Acid) J. Therm. Anal. Calorim. 2016;126:1243–1251. doi: 10.1007/s10973-016-5657-6. DOI
Saeidlou S., Huneault M.A., Li H., Park C.B. Poly (Lactic Acid) Crystallization. Prog. Polym. Sci. 2012;37:1657–1677. doi: 10.1016/j.progpolymsci.2012.07.005. DOI
Běhálek L., Seidl M., Dobránsky J. Crystallization of Polylactic Acid Composites with Banana and Hemp Fibres by Means of DSC and XRD Methods. Appl. Mech. Mater. 2014;616:325–332. doi: 10.4028/www.scientific.net/AMM.616.325. DOI
Brzeziński M., Biela T. Polylactide Nanocomposites with Functionalized Carbon Nanotubes and Their Stereocomplexes: A Focused Review. Mater. Lett. 2014;121:244–250. doi: 10.1016/j.matlet.2014.01.159. DOI
Murariu M., Laoutid F., Dubois P., Fontaine G., Bourbigot S., Devaux E., Campagne C., Ferreira M., Solarski S. Polymer Green Flame Retardants. Elsevier; Amsterdam, The Netherlands: 2014. Pathways to Biodegradable Flame Retardant Polymer (Nano) Composites; pp. 709–773.
Akindoyo J.O., Beg M.D., Ghazali S., Heim H.P., Feldmann M. Impact Modified PLA-Hydroxyapatite Composites–Thermo-Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2018;107:326–333. doi: 10.1016/j.compositesa.2018.01.017. DOI
Herrera N., Salaberria A.M., Mathew A.P., Oksman K. Plasticized Polylactic Acid Nanocomposite Films with Cellulose and Chitin Nanocrystals Prepared Using Extrusion and Compression Molding with Two Cooling Rates: Effects on Mechanical, Thermal and Optical Properties. Compos. Part A Appl. Sci. Manuf. 2016;83:89–97. doi: 10.1016/j.compositesa.2015.05.024. DOI
Arrigo R., Bartoli M., Malucelli G. Poly (Lactic Acid)–Biochar Biocomposites: Effect of Processing and Filler Content on Rheological, Thermal, and Mechanical Properties. Polymers. 2020;12:892. doi: 10.3390/polym12040892. PubMed DOI PMC
Battegazzore D., Bocchini S., Alongi J., Frache A. Rice Husk as Bio-Source of Silica: Preparation and Characterization of PLA–Silica Bio-Composites. RSC Adv. 2014;4:54703–54712. doi: 10.1039/C4RA05991C. DOI
Suaduang N., Ross S., Ross G., Pratumshat S., Mahasaranon S. Effect of Spent Coffee Grounds Filler on the Physical and Mechanical Properties of Poly (Lactic Acid) Bio-Composite Films. Mater. Today Proc. 2019;17:2104–2110. doi: 10.1016/j.matpr.2019.06.260. DOI
Ballesteros L.F., Teixeira J.A., Mussatto S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014;7:3493–3503. doi: 10.1007/s11947-014-1349-z. DOI
Mussatto S.I., Machado E., Martins S., Teixeira J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011;4:661–672. doi: 10.1007/s11947-011-0565-z. DOI
Suaduang N., Ross S., Ross G.M., Wangsoub S., Mahasaranon S. The Physical and Mechanical Properties of Biocomposite Films Composed of Poly (Lactic Acid) with Spent Coffee Grounds. Volume 824. Trans Tech Publications Ltd.; Bäch, Switzerland: 2019. pp. 87–93.
Naguib H.M., Hou G. Exploitation of Natural and Recycled Biomass Resources to Get Eco-Friendly Polymer. J. Polym. Environ. 2022 doi: 10.1007/s10924-022-02631-x. DOI
Ku Marsilla K.I., Verbeek C.J.R. Modification of Poly(Lactic Acid) Using Itaconic Anhydride by Reactive Extrusion. Eur. Polym. J. 2015;67:213–223. doi: 10.1016/j.eurpolymj.2015.03.054. DOI
Essabir H., Raji M., Laaziz S.A., Rodrique D., Bouhfid R. Thermo-Mechanical Performances of Polypropylene Biocomposites Based on Untreated, Treated and Compatibilized Spent Coffee Grounds. Compos. Part B Eng. 2018;149:1–11. doi: 10.1016/j.compositesb.2018.05.020. DOI
Jo M.Y., Ryu Y.J., Ko J.H., Yoon J. Effects of Compatibilizers on the Mechanical Properties of ABS/PLA Composites. J. Appl. Polym. Sci. 2012;125:E231–E238. doi: 10.1002/app.36732. DOI
Du J., Wang Y., Xie X., Xu M., Song Y. Styrene-Assisted Maleic Anhydride Grafted Poly (Lactic Acid) as an Effective Compatibilizer for Wood Flour/Poly (Lactic Acid) Bio-Composites. Polymers. 2017;9:623. doi: 10.3390/polym9110623. PubMed DOI PMC
Běhálek L., Borůvka M., Brdlík P., Habr J., Lenfeld P., Kroisová D., Veselka F., Novák J. Thermal Properties and Non-Isothermal Crystallization Kinetics of Biocomposites Based on Poly(Lactic Acid), Rice Husks and Cellulose Fibres. J. Therm. Anal. Calorim. 2020;142:629–649. doi: 10.1007/s10973-020-09894-3. DOI
Ma P., Jiang L., Ye T., Dong W., Chen M. Melt Free-Radical Grafting of Maleic Anhydride onto Biodegradable Poly(Lactic Acid) by Using Styrene as A Comonomer. Polymers. 2014;6:1528–1543. doi: 10.3390/polym6051528. DOI
Petruš J., Kučera F., Petrůj J. Post-Polymerization Modification of Poly (Lactic Acid) via Radical Grafting with Itaconic Anhydride. Eur. Polym. J. 2016;77:16–30. doi: 10.1016/j.eurpolymj.2016.02.016. DOI
Verbeek C.J.R., Hanipah S.H. Grafting Itaconic Anhydride onto Polyethylene Using Extrusion. J. Appl. Polym. Sci. 2010;116:3118–3126. doi: 10.1002/app.31901. DOI
Tamboli S.M., Mhaske S.T., Kale D.D. Crosslinked Polyethylene. Indian J. Chem. Technol. 2004;11:853–864.
Sarasua J.-R., Prud’homme R.E., Wisniewski M., Le Borgne A., Spassky N. Crystallization and Melting Behavior of Polylactides. Macromolecules. 1998;31:3895–3905. doi: 10.1021/ma971545p. DOI
Jeziorny A. Parameters Characterizing the Kinetics of the Non-Isothermal Crystallization of Poly (Ethylene Terephthalate) Determined by DSC. Polymer. 1978;19:1142–1144. doi: 10.1016/0032-3861(78)90060-5. DOI
Coburn N., Douglas P., Kaya D., Gupta J., McNally T. Isothermal and Non-Isothermal Crystallization Kinetics of Composites of Poly (Propylene) and MWCNTs. Adv. Ind. Eng. Polym. Res. 2018;1:99–110. doi: 10.1016/j.aiepr.2018.06.001. DOI
Muenprasat D., Suttireungwong S., Tongpin C. Functionalization of Poly (Lactic Acid) with Maleic Anhydride for Biomedical Application. J. Met. Mater. Miner. 2010;20:189–192.
Yang W., Fortunati E., Dominici F., Giovanale G., Mazzaglia A., Balestra G.M., Kenny J., Puglia D. Synergic Effect of Cellulose and Lignin Nanostructures in PLA Based Systems for Food Antibacterial Packaging. Eur. Polym. J. 2016;79:1–12. doi: 10.1016/j.eurpolymj.2016.04.003. DOI
Qiu Z., Fujinami S., Komura M., Nakajima K., Ikehara T., Nishi T. Nonisothermal Crystallization Kinetics of Poly (Butylene Succinate) and Poly (Ethylene Succinate) Polym. J. 2004;36:642–646. doi: 10.1295/polymj.36.642. DOI
Brdlík P., Borůvka M., Běhálek L., Lenfeld P. Biodegradation of Poly (Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope. Polymers. 2021;13:594. doi: 10.3390/polym13040594. PubMed DOI PMC
Arrieta M.P., Peponi L., López D., Fernández-García M. Recovery of Yerba Mate (Ilex Paraguariensis) Residue for the Development of PLA-Based Bionanocomposite Films. Ind. Crops Prod. 2018;111:317–328. doi: 10.1016/j.indcrop.2017.10.042. DOI
Morrell J.J. Degradation of Lignocellulosic Materials and Its Prevention. Jom. 2014;66:580–587. doi: 10.1007/s11837-014-0872-8. DOI
Mendes J.F., Martins J.T., Manrich A., Luchesi B.R., Dantas A.P.S., Vanderlei R.M., Claro P.C., Neto A.R.D.S., Mattoso L.H.C., Martins M.A. Thermo-Physical and Mechanical Characteristics of Composites Based on High-Density Polyethylene (HDPE) e Spent Coffee Grounds (SCG) J. Polym. Environ. 2021;29:2888–2900. doi: 10.1007/s10924-021-02090-w. DOI
Nekhamanurak B., Patanathabutr P., Hongsriphan N. The Influence of Micro-/Nano-CaCO3 on Thermal Stability and Melt Rheology Behavior of Poly (Lactic Acid) Energy Procedia. 2014;56:118–128. doi: 10.1016/j.egypro.2014.07.139. DOI
Tian J., Cao Z., Qian S., Xia Y., Zhang J., Kong Y., Sheng K., Zhang Y., Wan Y., Takahashi J. Improving Tensile Strength and Impact Toughness of Plasticized Poly(Lactic Acid) Biocomposites by Incorporating Nanofibrillated Cellulose. Nanotechnology. 2022;11:2469–2482. doi: 10.1515/ntrev-2022-0142. DOI
Gálvez J., Correa Aguirre J.P., Hidalgo Salazar M.A., Vera Mondragón B., Wagner E., Caicedo C. Effect of Extrusion Screw Speed and Plasticizer Proportions on the Rheological, Thermal, Mechanical, Morphological and Superficial Properties of PLA. Polymers. 2020;12:2111. doi: 10.3390/polym12092111. PubMed DOI PMC
Coelho G.O., Batista M.J., Ávila A.F., Franca A.S., Oliveira L.S. Development and Characterization of Biopolymeric Films of Galactomannans Recovered from Spent Coffee Grounds. J. Food Eng. 2021;289:110083. doi: 10.1016/j.jfoodeng.2020.110083. DOI