Supervised inference of gene-regulatory networks

. 2008 Jan 04 ; 9 () : 2. [epub] 20080104

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18177495

BACKGROUND: Inference of protein interaction networks from various sources of data has become an important topic of both systems and computational biology. Here we present a supervised approach to identification of gene expression regulatory networks. RESULTS: The method is based on a kernel approach accompanied with genetic programming. As a data source, the method utilizes gene expression time series for prediction of interactions among regulatory proteins and their target genes. The performance of the method was verified using Saccharomyces cerevisiae cell cycle and DNA/RNA/protein biosynthesis gene expression data. The results were compared with independent data sources. Finally, a prediction of novel interactions within yeast gene expression circuits has been performed. CONCLUSION: Results show that our algorithm gives, in most cases, results identical with the independent experiments, when compared with the YEASTRACT database. In several cases our algorithm gives predictions of novel interactions which have not been reported.

Zobrazit více v PubMed

Scholkopf B, Smola AJ. Learning with kernels. Cambridge, Massachusets , The MIT Press; 2002.

Wang H, Segal E, Ben-Hur A, Koller D, Brutlag DL. Identifying protein-protein interaction sites on a genome-wide scale. In: LK Saul YWLB, editor. Advaneces in Neural Information Processing Systems 17. Cambridge, MA , MIT press; 2005. pp. 1465–1472.

Ben-Hur A, Noble WS. Kernel methods for predicting protein-protein interactions. Bioinformatics. 2005;21 Suppl 1:i38–46. doi: 10.1093/bioinformatics/bti1016. PubMed DOI

Yamanishi Y, Vert JP, Kanehisa M. Protein network inference from multiple genomic data: a supervised approach. Bioinformatics. 2004;20 Suppl 1:I363–I370. doi: 10.1093/bioinformatics/bth910. PubMed DOI

Kato T, Tsuda K, Asai K. Selective integration of multiple biological data for supervised network inference. Bioinformatics. 2005;21:2488–2495. doi: 10.1093/bioinformatics/bti339. PubMed DOI

Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002;298:799–804. doi: 10.1126/science.1075090. PubMed DOI

Yeast Cell Cycle Analysis Project

Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998;9:3273–3297. PubMed PMC

Yeast Search for Transcriptional Regulators And Consensus Tracking

Bar-Joseph Z. Analyzing time series gene expression data. Bioinformatics. 2004;20:2493–2503. doi: 10.1093/bioinformatics/bth283. PubMed DOI

de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002;9:67–103. doi: 10.1089/10665270252833208. PubMed DOI

Scholkopf B, Tsuda K, Vert JP. Kernel Methods in Computational Biology. Cambridge, MA , MIT Press; 2004.

Bach FR, Jordan MI. Kernel independent component analysis. J Mach Learning Res. 2002;3:1–48. doi: 10.1162/153244303768966085. DOI

Ng A, Jordan M, Weiss Y. On spectral clustering: Analysis and an algorithm: Analysis and and algorithm. Advances in Neural Information Processing Systems. 2002;14:849–856.

Jollife I. Principal Component Analysis. New York , Springer-Verlag; 1986.

Koza JR. Genetic Programming: On the programing of computers by means of natural selection. MA , MIT Press; 1992.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...