Supervised inference of gene-regulatory networks
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18177495
PubMed Central
PMC2266705
DOI
10.1186/1471-2105-9-2
PII: 1471-2105-9-2
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- biologické modely * MeSH
- mapování interakce mezi proteiny metody MeSH
- počítačová simulace MeSH
- proteom metabolismus MeSH
- regulace genové exprese fyziologie MeSH
- rozpoznávání automatizované metody MeSH
- signální transdukce fyziologie MeSH
- umělá inteligence * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
BACKGROUND: Inference of protein interaction networks from various sources of data has become an important topic of both systems and computational biology. Here we present a supervised approach to identification of gene expression regulatory networks. RESULTS: The method is based on a kernel approach accompanied with genetic programming. As a data source, the method utilizes gene expression time series for prediction of interactions among regulatory proteins and their target genes. The performance of the method was verified using Saccharomyces cerevisiae cell cycle and DNA/RNA/protein biosynthesis gene expression data. The results were compared with independent data sources. Finally, a prediction of novel interactions within yeast gene expression circuits has been performed. CONCLUSION: Results show that our algorithm gives, in most cases, results identical with the independent experiments, when compared with the YEASTRACT database. In several cases our algorithm gives predictions of novel interactions which have not been reported.
Zobrazit více v PubMed
Scholkopf B, Smola AJ. Learning with kernels. Cambridge, Massachusets , The MIT Press; 2002.
Wang H, Segal E, Ben-Hur A, Koller D, Brutlag DL. Identifying protein-protein interaction sites on a genome-wide scale. In: LK Saul YWLB, editor. Advaneces in Neural Information Processing Systems 17. Cambridge, MA , MIT press; 2005. pp. 1465–1472.
Ben-Hur A, Noble WS. Kernel methods for predicting protein-protein interactions. Bioinformatics. 2005;21 Suppl 1:i38–46. doi: 10.1093/bioinformatics/bti1016. PubMed DOI
Yamanishi Y, Vert JP, Kanehisa M. Protein network inference from multiple genomic data: a supervised approach. Bioinformatics. 2004;20 Suppl 1:I363–I370. doi: 10.1093/bioinformatics/bth910. PubMed DOI
Kato T, Tsuda K, Asai K. Selective integration of multiple biological data for supervised network inference. Bioinformatics. 2005;21:2488–2495. doi: 10.1093/bioinformatics/bti339. PubMed DOI
Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002;298:799–804. doi: 10.1126/science.1075090. PubMed DOI
Yeast Cell Cycle Analysis Project
Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998;9:3273–3297. PubMed PMC
Yeast Search for Transcriptional Regulators And Consensus Tracking
Bar-Joseph Z. Analyzing time series gene expression data. Bioinformatics. 2004;20:2493–2503. doi: 10.1093/bioinformatics/bth283. PubMed DOI
de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002;9:67–103. doi: 10.1089/10665270252833208. PubMed DOI
Scholkopf B, Tsuda K, Vert JP. Kernel Methods in Computational Biology. Cambridge, MA , MIT Press; 2004.
Bach FR, Jordan MI. Kernel independent component analysis. J Mach Learning Res. 2002;3:1–48. doi: 10.1162/153244303768966085. DOI
Ng A, Jordan M, Weiss Y. On spectral clustering: Analysis and an algorithm: Analysis and and algorithm. Advances in Neural Information Processing Systems. 2002;14:849–856.
Jollife I. Principal Component Analysis. New York , Springer-Verlag; 1986.
Koza JR. Genetic Programming: On the programing of computers by means of natural selection. MA , MIT Press; 1992.