Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu srovnávací studie, hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
17170011
PubMed Central
PMC1802551
DOI
10.1093/nar/gkl1001
PII: gkl1001
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- CDC geny MeSH
- genetická transkripce MeSH
- genové regulační sítě MeSH
- lineární modely MeSH
- metoda nejmenších čtverců MeSH
- modely genetické * MeSH
- regulace genové exprese u hub * MeSH
- Saccharomyces cerevisiae genetika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory analýza MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- transkripční faktory MeSH
Microarray studies are capable of providing data for temporal gene expression patterns of thousands of genes simultaneously, comprising rich but cryptic information about transcriptional control. However available methods are still not adequate in extraction of useful information about transcriptional regulation from these data. This study presents a dynamic model of gene expression which allows for identification of transcriptional regulators using time series of gene expression. The algorithm was applied for identification of transcriptional regulators controlling 40 cell cycle regulated genes of Saccharomyces cerevisiae. The presented algorithm uses a dynamic model of time continuous gene expression with the assumption that the target gene expression profile results from the action of the upstream regulator. The goal is to apply the model to putative regulators to estimate the transcription pattern of a target gene using a least squares minimization procedure. The procedure iteratively tests all possible transcription factors and selects those that best approximate the target gene expression profile. Results were compared with independently published data and good agreement between the published and identified transcriptional regulators was found.
Zobrazit více v PubMed
Cho R.J., Campbell M.J., Winzeler E.A., Steinmetz L., Conway A., Wodicka L., Wolfsberg T.G., Gabrielian A.E., Landsman D., Lockhart D.J., et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell. 1998;2:65–73. PubMed
Spellman P.T., Sherlock G., Zhang M.Q., Iyer V.R., Anders K., Eisen M.B., Brown P.O., Botstein D., Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 1998;9:3273–3297. PubMed PMC
Eisen M.B., Spellman P.T., Brown P.O., Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA. 1998;95:14863–14868. PubMed PMC
Chu S., DeRisi J., Eisen M., Mulholland J., Botstein D., Brown P.O., Herskowitz I. The transcriptional program of sporulation in budding yeast. Science. 1998;282:699–705. PubMed
Holter N.S., Maritan A., Cieplak M., Fedoroff N.V., Banavar J.R. Dynamic modeling of gene expression data. Proc. Natl Acad. Sci. USA. 2001;98:1693–1698. PubMed PMC
Holter N.S., Mitra M., Maritan A., Cieplak M., Banavar J.R., Fedoroff N.V. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc. Natl Acad. Sci. USA. 2000;97:8409–8414. PubMed PMC
Alter O., Brown P.O., Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl Acad. Sci. USA. 2000;97:10101–10106. PubMed PMC
Iyer R., Iverson T.M., Accardi A., Miller C. A biological role for prokaryotic ClC chloride channels. Nature. 2002;419:715–718. PubMed
Simon I., Barnett J., Hannett N., Harbison C.T., Rinaldi N.J., Volkert T.L., Wyrick J.J., Zeitlinger J., Gifford D.K., Jaakkola T.S., et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell. 2001;106:697–708. PubMed
Lee T.I., Rinaldi N.J., Robert F., Odom D.T., Bar-Joseph Z., Gerber G.K., Hannett N.M., Harbison C.T., Thompson C.M., Simon I., et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002;298:799–804. PubMed
Chen K.C., Wang T.Y., Tseng H.H., Huang C.Y., Kao C.Y. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics. 2005;21:2883–2890. PubMed
Chen H.C., Lee H.C., Lin T.Y., Li W.H., Chen B.S. Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics. 2004;20:1914–1927. PubMed
Sasik R., Iranfar N., Hwa T., Loomis W.F. Extracting transcriptional events from temporal gene expression patterns during Dictyostelium development. Bioinformatics. 2002;18:61–66. PubMed
Woolf P.J., Wang Y. A fuzzy logic approach to analyzing gene expression data. Physiol. Genomics. 2000;3:9–15. PubMed
Nachman I., Regev A., Friedman N. Inferring quantitative models of regulatory networks from expression data. Bioinformatics. 2004;20:I248–I256. PubMed
Bar-Joseph Z., Gerber G.K., Lee T.I., Rinaldi N.J., Yoo J.Y., Robert F., Gordon D.B., Fraenkel E., Jaakkola T.S., Young R.A., et al. Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 2003;21:1337–1342. PubMed
Wang W., Cherry J.M., Nochomovitz Y., Jolly E., Botstein D., Li H. Inference of combinatorial regulation in yeast transcriptional networks: a case study of sporulation. Proc. Natl Acad. Sci. USA. 2005;102:1998–2003. PubMed PMC
Makita Y., De Hoon M.J., Ogasawara N., Miyano S., Nakai K. Bayesian joint prediction of associated transcription factors in Bacillus subtilis. Pac. Symp. Biocomput. 2005:507–518. PubMed
Vohradsky J. Neural network model of gene expression. FASEB J. 2001;15:846–854. PubMed
Vohradsky J. Neural model of the genetic network. J. Biol. Chem. 2001;276:36168–36173. PubMed
Vu T.T., Vohradsky J. Genexp-a genetic network simulation environment. Bioinformatics. 2002;18:1400–1401. PubMed
Bar-Joseph Z. Analyzing time series gene expression data. Bioinformatics. 2004;20:2493–2503. PubMed
de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 2002;9:67–103. PubMed
Matsuno H., Doi A., Nagasaki M., Miyano S. Hybrid Petri net representation of gene regulatory network. Pac. Symp. Biocomp. 2000:341–352. PubMed
McAdams H.H., Shapiro L. Circuit simulation of genetic networks. Science. 1995;269:650–656. PubMed
McAdams H.H., Arkin A. Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struct. 1998;27:199–224. PubMed
Dembele D., Kastner P. Fuzzy C-means method for clustering microarray data. Bioinformatics. 2003;19:973–980. PubMed
Gasch A.P., Eisen M.B. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol. 2002;3:research0059.1–research0059.22. PubMed PMC
Tavazoie S., Hughes J.D., Campbell M.J., Cho R.J., Church G.M. Systematic determination of genetic network architecture. Nature Genet. 1999;22:281–285. PubMed
Alter O., Brown P.O., Botstein D. Generalized singular value decomposition for comparative analysis of genome-scale expression datasets of two different organisms. Proc. Natl Acad. Sci. USA. 2003;100:3351–3356. PubMed PMC
Iyer V.R., Horak C.E., Scafe C.S., Botstein D., Snyder M., Brown P.O. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature. 2001;409:533–538. PubMed
General and molecular microbiology and microbial genetics in the IM CAS