Virtual mutagenesis of the yeast cyclins genetic network reveals complex dynamics of transcriptional control networks
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21541341
PubMed Central
PMC3081828
DOI
10.1371/journal.pone.0018827
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- cykliny genetika metabolismus MeSH
- delece genu MeSH
- genové regulační sítě genetika MeSH
- modely genetické MeSH
- mutageneze genetika MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cykliny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
Study of genetic networks has moved from qualitative description of interactions between regulators and regulated genes to the analysis of the interaction dynamics. This paper focuses on the analysis of dynamics of one particular network--the yeast cyclins network. Using a dedicated mathematical model of gene expression and a procedure for computation of the parameters of the model from experimental data, a complete numerical model of the dynamics of the cyclins genetic network was attained. The model allowed for performing virtual experiments on the network and observing their influence on the expression dynamics of the genes downstream in the regulatory cascade. Results show that when the network structure is more complicated, and the regulatory interactions are indirect, results of gene deletion are highly unpredictable. As a consequence of quantitative behavior of the genes and their connections within the network, causal relationship between a regulator and target gene may not be discovered by gene deletion. Without including the dynamics of the system into the network, its functional properties cannot be studied and interpreted correctly.
Zobrazit více v PubMed
Kim MS, Kim JR, Cho KH. Dynamic network rewiring determines temporal regulatory functions in Drosophila melanogaster development processes. Bioessays. 2010;32:505–513. PubMed
Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, et al. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature. 2004;431:308–312. PubMed
To CC, Vohradsky J. Measurement variation determines the gene network topology reconstructed from experimental data: a case study of the yeast cyclin network. FASEB J. 2010;24:3468–3478. PubMed
Akutsu T, Miyano S, Kuhara S. Algorithms for Identifying Boolean Networks and Related Biological Networks Based on Matrix Multiplication and Fingerprint Function. J Comput Biol. 2000;7:331–343. PubMed
Davidich M, Bornholdt S. The transition from differential equations to Boolean networks: a case study in simplifying a regulatory network model. J Theor Biol. 2008;255:269–277. PubMed
Davidich MI, Bornholdt S. Boolean network model predicts cell cycle sequence of fission yeast. PLoS One. 2008;3:e1672. PubMed PMC
Szallasi Z, Liang S. Modeling the normal and neoplastic cell cycle with “realistic Boolean genetic networks”: their application for understanding carcinogenesis and assessing therapeutic strategies. Pac Symp Biocomput. 1998;16:66–76. PubMed
Thomas R. Boolean formalization of genetic control circuits. Journal of Theoretical Biology. 1973;42:563–585. PubMed
Wuensche A. The ghost in the machine: Basins of attractions in random boolean networks. SFI Studies in the Science of Complexity. Langton: C.G; 1993. pp. 465–501.
Thomas R, Kaufman M. Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos. 2001;11:180–195. PubMed
Thomas R, Kaufman M. Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior. Chaos. 2001;11:170–179. PubMed
Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;7:601–620. PubMed
Matsuno H, Doi A, Nagasaki M, Miyano S. Hybrid Petri net representation of gene regulatory network. Pacific Symposium on Biocomputing. 2000:341–352. PubMed
Honkela A, Girardot C, Gustafson EH, Liu YH, Furlong EE, et al. Model-based method for transcription factor target identification with limited data. Proc Natl Acad Sci U S A. 2010;107:7793–7798. PubMed PMC
Barenco M, Brewer D, Papouli E, Tomescu D, Callard R, et al. Dissection of a complex transcriptional response using genome-wide transcriptional modelling. Mol Syst Biol. 2009;5:327. PubMed PMC
Shmulevich I, Aitchison JD. Deterministic and stochastic models of genetic regulatory networks. Methods Enzymol. 2009;467:335–356. PubMed PMC
Karlebach G, Shamir R. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol. 2008;9:770–780. PubMed
Markowetz F, Spang R. Inferring cellular networks–a review. BMC Bioinformatics. 2007;8(Suppl 6):S5. PubMed PMC
de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002;9:67–103. PubMed
Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, et al. Computational discovery of gene modules and regulatory networks. Nat Biotechnol. 2003;21:1337–1342. PubMed
Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, et al. Revealing modular organization in the yeast transcriptional network. Nat Genet. 2002;31:370–377. PubMed
Ihmels J, Levy R, Barkai N. Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat Biotechnol. 2004;22:86–92. PubMed
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. Network motifs: simple building blocks of complex networks. Science. 2002;298:824–827. PubMed
Veitia RA. A sigmoidal transcriptional response: cooperativity, synergy and dosage effects. Biol Rev Camb Philos Soc. 2003;78:149–170. PubMed
Vohradsky J. Neural network model of gene expression. FASEB J. 2001;15:846–854. PubMed
Vohradsky J. Neural model of the genetic network. J Biol Chem. 2001;276:36168–36173. PubMed
Vu TT, Vohradsky J. Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucleic Acids Res. 2007;35:279–287. PubMed PMC
Vu TT, Vohradsky J. Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data. Genomics. 2009;93:426–433. PubMed
Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998;9:3273–3297. PubMed PMC
Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997;13:261–291. PubMed
Nasmyth K. At the heart of the budding yeast cell cycle. Trends Genet. 1996;12:405–412. PubMed
Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell. 2001;106:697–708. PubMed
Pramila T, Wu W, Miles S, Noble WS, Breeden LL. The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev. 2006;20:2266–2278. PubMed PMC
Bahler J. Cell-cycle control of gene expression in budding and fission yeast. Annu Rev Genet. 2005;39:69–94. PubMed
Bahler J. Genome Regulation in Fission Yeast ICSB 2010. Edinburgh, UK.: 2010. 8
Swain MT, Mandel JJ, Dubitzky W. Comparative study of three commonly used continuous deterministic methods for modeling gene regulation networks. BMC Bioinformatics. 2010;11:459. PubMed PMC
Vandekerckhove J. General simulated annealing algorithm. 2006. http://wwwmathworkscom/matlabcentral/fileexchange/10548-general-simulated-annealing-algorithm.