An Algorithm for Template-Based Prediction of Secondary Structures of Individual RNA Sequences
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29067038
PubMed Central
PMC5641303
DOI
10.3389/fgene.2017.00147
Knihovny.cz E-zdroje
- Klíčová slova
- RNA, homology, prediction, secondary structure, template structure,
- Publikační typ
- časopisecké články MeSH
While understanding the structure of RNA molecules is vital for deciphering their functions, determining RNA structures experimentally is exceptionally hard. At the same time, extant approaches to computational RNA structure prediction have limited applicability and reliability. In this paper we provide a method to solve a simpler yet still biologically relevant problem: prediction of secondary RNA structure using structure of different molecules as a template. Our method identifies conserved and unconserved subsequences within an RNA molecule. For conserved subsequences, the template structure is directly transferred into the generated structure and combined with de-novo predicted structure for the unconserved subsequences with low evolutionary conservation. The method also determines, when the generated structure is unreliable. The method is validated using experimentally identified structures. The accuracy of the method exceeds that of classical prediction algorithms and constrained prediction methods. This is demonstrated by comparison using large number of heterogeneous RNAs. The presented method is fast and robust, and useful for various applications requiring knowledge of secondary structures of individual RNA sequences.
Zobrazit více v PubMed
Andersen E. S., Rosenblad M. A., Larsen N., Westergaard J. C., Burks J., Wower I. K., et al. . (2006). The tmRDB and SRPDB resources. Nucleic Acids Res. 34, D163–D168. 10.1093/nar/gkj142 PubMed DOI PMC
Darty K., Denise A., Ponty Y. (2009). VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25, 1974–1975. 10.1093/bioinformatics/btp250 PubMed DOI PMC
Gardner P. P., Daub J., Tate J. G., Nawrocki E. P., Kolbe D. L., Lindgreen S., et al. . (2009). Rfam: updates to the RNA families database. Nucleic Acids Res. 37, D136–D140. 10.1093/nar/gkn766 PubMed DOI PMC
Gardner P. P., Giegerich R. (2004). A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5:140. 10.1186/1471-2105-5-140 PubMed DOI PMC
Gorodkin J., Ruzzo W. L. (2014). RNA Sequence, Structure, and Function Computational and Bioinformatic Methods. New York, NY: Humana Press.
Gutell R. R., Lee J. C., Cannone J. J. (2002). The accuracy of ribosomal RNA comparative structure models. Curr. Opin. Struct. Biol. 12, 301–310. 10.1016/S0959-440X(02)00339-1 PubMed DOI
Hamada M., Sato K., Kiryu H., Mituyama T., Asai K. (2009). Predictions of RNA secondary structure by combining homologous sequence information. Bioinformatics 25, i330–i338. 10.1093/bioinformatics/btp228 PubMed DOI PMC
Hofacker L. (2004). RNA secondary structure analysis using the Vienna RNA package. Curr. Protoc. Bioinformatics Chapter 12, Unit 12 2. 10.1002/0471250953.bi1202s04 PubMed DOI
Hofacker I. L., Bernhart S. H., Stadler P. F. (2004). Alignment of RNA base pairing probability matrices. Bioinformatics 20, 2222–2227. 10.1093/bioinformatics/bth229 PubMed DOI
Kertesz M., Wan Y., Mazor E., Rinn J. L., Nutter R. C., Chang H. Y., et al. . (2010). Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107. 10.1038/nature09322 PubMed DOI PMC
Kiryu H., Kin T., Asai K. (2007). Robust prediction of consensus secondary structures using averaged base pairing probability matrices. Bioinformatics 23, 434–441. 10.1093/bioinformatics/btl636 PubMed DOI
Kreyszig E. (1979). Advanced Engineering Mathematics. New York, NY: John Wiley & Sons Inc.
Lorenz R., Bernhart S. H., Honer Zu Siederdissen C., Tafer H., Flamm C., Stadler P. F. (2011). ViennaRNA Package 2.0. Algorithms Mol. Biol. 6:26. 10.1186/1748-7188-6-26 PubMed DOI PMC
Loughrey D., Watters K. E., Settle A. H., Lucks J. B. (2014). SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res. 42:e165. 10.1093/nar/gku909 PubMed DOI PMC
Mathews D. H. (2004). Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10, 1178–1190. 10.1261/rna.7650904 PubMed DOI PMC
Mathews D. H. (2006). Revolutions in RNA secondary structure prediction. J. Mol. Biol. 359, 526–532. 10.1016/j.jmb.2006.01.067 PubMed DOI
Nawrocki E. P., Eddy S. R. (2013). Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935. 10.1093/bioinformatics/btt509 PubMed DOI PMC
Sharma C. M., Darfeuille F., Plantinga T. H., Vogel J. (2007). A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev. 21, 2804–2817. 10.1101/gad.447207 PubMed DOI PMC
Smith C., Heyne S., Richter A. S., Will S., Backofen R. (2010). Freiburg RNA Tools: a web server integrating INTARNA, EXPARNA and LOCARNA. Nucleic Acids Res. 38, W373–W377. 10.1093/nar/gkq316 PubMed DOI PMC
Sussman J. L., Lin D., Jiang J., Manning N. O., Prilusky J., Ritter O., et al. . (1998). Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr. D Biol. Crystallogr. 54, 1078–1084. 10.1107/S0907444998009378 PubMed DOI
Thompson J. D., Higgins D. G., Gibson T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. PubMed PMC
Underwood J. G., Uzilov A. V., Katzman S., Onodera C. S., Mainzer J. E., Mathews D. H., et al. . (2010). FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods 7, 995–1001. 10.1038/nmeth.1529 PubMed DOI PMC