Activity of translation system and abundance of tmRNA during development of Streptomyces aureofaciens producing tetracycline

. 2006 ; 51 (6) : 517-24.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17455787

Transition from exponential phase of growth to stationary phase in Streptomyces aureofaciens is characterized by a decrease in the rate of translation and induction of tetracycline (Ttc) biosynthesis. In exponential phase, no significant changes were found in the activity of ribosomes at binding of ternary complex Phe-tRNA.EF-Tu.GTP to the A-site on ribosomes. Overexpression of Ttc in stationary phase is accompanied by a decrease in the binding of the ternary complex Phe-tRNA.EF-Tu.GTP to the A-site of ribosome and a formation of an aggregate with Ttc by part of the ribosomes. Antibiotics that cause ribosome to stall or pause could increase the requirement for tmRNA in the process called trans-translation. We found differences in the level of tmRNA during the development of S. aureofaciens. Subinhibitory concentrations of Ttc, streptomycin and chloramphenicol induced an increase in the tmRNA level in cells from the exponential phase of growth. In vitro trans-translation system of S. aureofaciens was sensitive to Ttc at a concentration of > 15 micromol/L; the trans-translation system can thus be considered to contribute to resistance against Ttc produced only at sublethal concentrations. These experiments suggest that the main role of the rising tmRNA level at the beginning of the Ttc production is connected with ribosome rescue.

Zobrazit více v PubMed

Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3040-4 PubMed

EMBO J. 1999 Aug 16;18(16):4579-89 PubMed

Arch Microbiol. 2006 Feb;184(6):343-52 PubMed

J Bacteriol. 2005 Jul;187(14):4739-51 PubMed

Nucleic Acids Res. 1989 Nov 11;17(21):8889 PubMed

Genes Cells. 2002 May;7(5):509-19 PubMed

FEMS Microbiol Lett. 2003 Jan 21;218(1):9-14 PubMed

Science. 1999 Dec 10;286(5447):2165-9 PubMed

J Bacteriol. 2004 May;186(10):3160-72 PubMed

J Bacteriol. 2003 Jan;185(2):573-80 PubMed

Antimicrob Agents Chemother. 1998 Jul;42(7):1702-5 PubMed

EMBO J. 1999 Jul 1;18(13):3793-9 PubMed

Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3440-5 PubMed

Genes Cells. 2000 Aug;5(8):627-35 PubMed

Genes Dev. 1998 May 1;12(9):1348-55 PubMed

RNA. 2001 Dec;7(12):1708-16 PubMed

Mol Microbiol. 2005 Jul;57(2):565-75 PubMed

Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 PubMed

J Mol Biol. 1997 May 23;268(5):803-8 PubMed

Nucleic Acids Res. 2004 Aug 04;32(14):4119-26 PubMed

Cell. 2000 Dec 22;103(7):1143-54 PubMed

Mol Cell. 2003 Oct;12(4):903-11 PubMed

Nucleic Acids Res. 2005 Oct 04;33(17):5544-52 PubMed

Proc Natl Acad Sci U S A. 1990 Aug;87(15):5589-93 PubMed

EMBO J. 2000 Mar 1;19(5):1098-107 PubMed

Science. 1996 Feb 16;271(5251):990-3 PubMed

FEMS Microbiol Rev. 1996 Oct;19(1):1-24 PubMed

Genes Cells. 2002 Jul;7(7):629-38 PubMed

Mol Microbiol. 2002 Aug;45(3):745-54 PubMed

J Bacteriol. 1998 Aug;180(16):4089-92 PubMed

Gene. 2003 Dec 4;321:163-71 PubMed

EMBO J. 2001 Apr 17;20(8):1829-39 PubMed

J Bacteriol. 2000 Mar;182(6):1558-63 PubMed

RNA. 2006 Feb;12(2):248-55 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace