tmRNA of Streptomyces collinus and Streptomyces griseus during the growth and in the presence of antibiotics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21261886
PubMed Central
PMC3815426
DOI
10.1111/j.1751-7915.2008.00066.x
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky biosyntéza MeSH
- bakteriální RNA chemie genetika metabolismus MeSH
- proteosyntéza MeSH
- ribozomy chemie genetika metabolismus MeSH
- stabilita RNA MeSH
- Streptomyces griseus genetika růst a vývoj metabolismus MeSH
- Streptomyces genetika růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální RNA MeSH
- tmRNA MeSH Prohlížeč
Streptomycetes are soil microorganisms with the potential to produce a broad spectrum of secondary metabolities. The production of antibiotics is accompanied by a decrease in protein synthesis, which raises the question of how these bacteria survived the transition from the primary to the secondary metabolism. Translating ribosomes incapable to properly elongate or terminate polypeptide chain activate bacterial trans-translation system. Abundance and stability of the tmRNA during growth of Streptomyces collinus and Streptomyces griseus producing kirromycin and streptomycin, respectively, was analysed. The level of tmRNA is mostly proportional to the activity of the translational system. We demonstrate that the addition of sub-inhibitory concentrations of produced antibiotics to the cultures from the beginning of the exponential phase of growth leads to an increase in tmRNA levels and to an incorporation of amino acids into the tag-peptides at trans-translation of stalled ribosomes. These findings suggest that produced antibiotics induce tmRNA that facilitate reactivation of stalled complex of ribosomes and maintain viability. The effect of antibiotics that inhibit the cell-wall turnover, DNA, RNA or protein synthesis on the level of tmRNA was examined. Antibiotics interfering with ribosomal target sites are more effective at stimulation of the tmRNA level in streptomycetes examined than those affecting the synthesis of DNA, RNA or the cell wall.
Zobrazit více v PubMed
Abo T., Ueda K., Sunohara T., Ogawa K., Aiba H. Ssra‐mediated protein tagging in the presence of miscoding drugs and its physiological role in Escherichia coli. Genes Cells. 2002;7:629–638. PubMed
Asano K., Kurita D., Takada K., Konno T., Muto A., Himeno H. Competition between trans‐translation and termination or elongation of translation. Nucl Acids Res. 2005;33:5544–5552. PubMed PMC
Braud S., Lavire C., Bellier A., Mazodier P. Effect of SsrA (tmRNA) tagging system on translational regulation in Streptomyces. Arch Microbiol. 2005;184:343–352. PubMed
Dwyer D.J., Kohanski M.A., Hayete B., Collins J.J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol. 2007;3:91. PubMed PMC
Fujihara A., Tomatsu H., Inagaki S., Tadaki T., Ushida C., Himeno H., Muto A. Detection of tmRNA‐mediated trans‐translation products in Bacillus subtilis. Genes Cells. 2002;7:343–350. PubMed
Goh E.B., Yim G., Tsui W., McClure J.E., Surette M.G., Davies J. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA. 2002;99:17025–17030. PubMed PMC
Gromadski K.B., Rodnina M.V. Streptomycin interferes with conformational coupling between codon recognition and GTPase activation on the ribosome. Nat Struct Mol Biol. 2004;11:316–322. PubMed
Hayes C.S., Bose B., Sauer R.T. Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci U S A. 2002;99:3440–3445. PubMed PMC
Hayes C.S., Sauer R.T. Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translation quality control. Mol Cell. 2003;12:903–911. PubMed
Heinzel P., Werbitzky O., Distler J., Piepersberg W. A second streptomycin resistance gene from Streptomyces griseus codes for streptomycin‐3‐phosphotransferase. Relationships between antibiotic and protein kinases. Arch Microbiol. 1988;150:184–192. PubMed
Himeno H., Sato M., Tadaki T., Fukushima M., Ushida C., Muto A. In vitro Trans‐translation mediated by alanine‐charged 10Sa RNA. J Mol Biol. 1997;268:803–808. PubMed
Hong S‐J., Tran Q‐A., Keiler K.C. Cell cycle regulated degradation of tmRNA is controlled by RNaseR and SmpB. Mol Microbiol. 2005;57:565–575. PubMed PMC
Karzai A.W., Susskind M.M., Sauer R.T. SmpB, a unique RNA‐binding protein essential for the peptide‐tagging activity of SsrA (tmRNA) EMBO J. 1999;18:3793–3799. PubMed PMC
Keiler K.C., Waller P.R., Sauer R.T. Role of a peptide tagging system in degradation of proteins synthesized from damaged mRNA. Science. 1996;271:955–956. PubMed
Kim B‐H., Andersen C., Benz R. Identification of a cell wall channel of Streptomyces griseus: the channel contains a binding site for streptomycin. Mol Microbiol. 2001;41:665–673. PubMed
Kohanski M.A., Dwyer D., Lawrence C.A., Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810. PubMed
Konno T., Takahashi T., Kurita D., Muto A., Himeno H. A minimum structure of aminoglycosides that causes an initiation shift of trans‐translation. Nucl Acids Res. 2004;32:4119–4126. PubMed PMC
Li X., Hirano R., Tagami H., Aiba H. Protein tagging at rare codons is caused by tmRNA action at 3′ end of nonstop mRNA generated in response to ribosome stalling. RNA. 2006;12:248–255. PubMed PMC
Luidalepp H., Hallier M., Felden B., Tenson T. tmRNA decreases the bactericidal activity of aminoglycosides and succeptibility to inhibitors of cell wall synthesis. RNA Biol. 2005;2:70–74. PubMed
Mikulík K., Weiser J., Hašková D. Protein synthesis elongation factor EF‐Tu from Streptomyces collinus producing kirromycin. Biochem Biophys Res Commun. 1982;108:861–867. PubMed
Mikulík K., Palečková P., Felsberg J., Bobek J., Zídková J., Halada P. SsrA genes of streptomycetes and association of proteins to the tmRNA during development and cellular differentiation. Proteomics. 2008;8:1429–1441. PubMed
Newell K.V., Thomas D.P., Brekasis D., Paget M.S.B. The RNA polymerase‐binding protein RbpA confers basal levels of rifampicin resistance of Streptomyces coelicolor. Mol Microbiol. 2006;60:687–696. PubMed
Nishimura K., Hosaka T., Tokoyama S., Okamoto S., Ochi K. Mutations in rsmG encoding a 16S rRNA methyltransferase result in low‐level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2) J Bacteriol. 2007;189:3876–3883. PubMed PMC
Ostash B., Saghatelian A., Walker S. A streamlined metabolic pathway for the biosynthesis of moenomycin A. Chem Biol. 2007;14:257–267. PubMed PMC
Palečková P., Bobek J., Felsberg J., Mikulík K. Activity of translation system and abudance of tmRNA during development of Streptomyces aureofaciens producing tetracycline. Fol Microbiol. 2006;51:517–524. PubMed
Parmeggiani A., Nissen P. Elongation factor Tu‐targeted antibiotics: Four different structures, two mechanisms of action. FEBS Lett. 2006;580:4576–4581. PubMed
Roche E.D., Sauer R.T. SsrA‐mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J. 1999;18:4579–4589. PubMed PMC
Rudinger‐Thirion J., Giege R., Felden B. Aminoacylated tmRNA from Escherichia coli interacts with prokaryotic elongation factor Tu. RNA. 1999;5:989–992. PubMed PMC
Shimizu Y., Ueda T. SmpB triggers GTP hydrolysis of elongation factor Tu on ribosomes by compensating for the lack of codon‐anticodon interaction during trans‐translation initiation. J Biol Chem. 2006;281:15987–15996. PubMed
Tsui W.H., Yim G., Wang H.H., McClure J.E., Surrete M.G., Davies J. Dual effects of MLS antibiotics: transcriptional modulation and interactions on the ribosome. Chem Biol. 2004;11:1307–1316. PubMed
Ueda K., Yamamoto Y., Ogawa K., Abo T., Inokuchi H., Aiba H. Bacterial SsrA system plays a role in coping with unwanted translational read through caused by suppressor tRNAs. Genes Cells. 2002;7:509–519. PubMed
Voigt C.A., Martinez C., Wang Z.G., Mayo S.L., Arnold F.H. Protein building blocks preserved by recombination. Nat Struct Biol. 2002;9:553–558. PubMed
Wolf H., Zahner H. Metabolic products of microorganisms. Kirromycin. Arch Microbiol. 1972;83:147–154. PubMed
Wower I.K., Zwieb C.W., Guven S.A., Wower J. Binding and cross‐linking of tmRNA to ribosomal protein S1, on and off the Eschrichia coli ribosome. EMBO J. 2000;19:6612–6621. PubMed PMC