tmRNA abundance in Streptomyces aureofaciens, S. griseus and S. collinus under stress-inducing conditions
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18298042
DOI
10.1007/bf02932105
Knihovny.cz E-zdroje
- MeSH
- bakteriální RNA metabolismus MeSH
- chlorid sodný škodlivé účinky MeSH
- koncentrace vodíkových iontů MeSH
- messenger RNA metabolismus MeSH
- northern blotting MeSH
- proteosyntéza MeSH
- RNA transferová metabolismus MeSH
- Streptomyces aureofaciens fyziologie MeSH
- Streptomyces fyziologie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální RNA MeSH
- chlorid sodný MeSH
- messenger RNA MeSH
- RNA transferová MeSH
- tmRNA MeSH Prohlížeč
tmRNA and protein SmpB are the main components required for rescue of stalled ribosomes incapable of properly elongating or terminating the polypeptide chain. We examined the tmRNA level and protein synthesis in Streptomyces aureofaciens, S. griseus and S. collinus synthesizing tetracycline, streptomycin and kirromycin, respectively, during various stress conditions. Downshift in temperature caused a decrease in protein synthesis but the level of tmRNA increased. Shift up in temperature induced decay of tmRNA in all strains and in S. collinus led to stimulation and in S. aureofaciens and S. griseus to inhibition of protein synthesis. At high NaCl concentrations protein synthesis was inhibited and tmRNA decayed. Shift in pH from 7.0 to 5.0 had no pronounced effect on the tmRNA level while upshift to pH 9.0 in S. collinus and S. aureofaciens caused inhibition of protein synthesis and decay of tmRNA in S. collinus. In contrast, protein synthesis and tmRNA level increased in S. griseus at the alkaline pH. Our data show that tmRNA abundance is important for survival of streptomycetes under certain unfavorable conditions.
Zobrazit více v PubMed
J Appl Microbiol. 2004;96(6):1237-44 PubMed
EMBO J. 1999 Aug 16;18(16):4579-89 PubMed
Genes Cells. 2002 Mar;7(3):343-50 PubMed
J Bacteriol. 1999 Apr;181(7):2209-16 PubMed
Mol Microbiol. 2005 Sep;57(6):1750-61 PubMed
Biochimie. 1981 Aug-Sep;63(8-9):699-707 PubMed
Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9223-7 PubMed
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3440-5 PubMed
Mol Cell. 2003 Oct;12(4):903-11 PubMed
J Biol Chem. 1995 Apr 21;270(16):9322-6 PubMed
J Bacteriol. 2002 Aug;184(15):4246-58 PubMed
RNA. 2006 Feb;12(2):248-55 PubMed
Genes Cells. 2000 Aug;5(8):627-35 PubMed
J Bacteriol. 2007 May;189(10):3729-37 PubMed
PLoS Pathog. 2006 Jan;2(1):e6 PubMed
Appl Microbiol. 1968 Aug;16(8):1134-6 PubMed
Genes Cells. 2002 May;7(5):509-19 PubMed
Mol Microbiol. 2003 Jun;48(5):1389-400 PubMed
Folia Microbiol (Praha). 2006;51(6):517-24 PubMed
RNA. 1999 Aug;5(8):989-92 PubMed
Genes Cells. 2002 Jul;7(7):629-38 PubMed
EMBO J. 1999 Jul 1;18(13):3793-9 PubMed
Genes Dev. 1998 May 1;12(9):1338-47 PubMed
Nat Struct Mol Biol. 2004 Nov;11(11):1054-9 PubMed
Mol Microbiol. 2001 Nov;42(4):1007-20 PubMed
Biochem Biophys Res Commun. 1999 Nov 19;265(2):305-10 PubMed
J Bacteriol. 2004 Dec;186(24):8207-12 PubMed
Mol Cell. 2007 Jan 12;25(1):161-6 PubMed