Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
20-07313S
Czech Science Foundation
18-01163S
Czech Science Foundation
Project BIOCEV-FAR LQ1604
Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program II
MSM200501903
Czech Academy of Sciences
PubMed
32947982
PubMed Central
PMC7554689
DOI
10.3390/ijms21186800
PII: ijms21186800
Knihovny.cz E-zdroje
- Klíčová slova
- RGD peptide, X-ray photoelectron spectroscopy, biomimetic surface, hierarchical bioactive polymer brushes, vascular graft, “click”-chemistry,
- MeSH
- adsorpce MeSH
- aminokyselinové motivy MeSH
- azidy chemie MeSH
- biokompatibilní potahované materiály * MeSH
- biomimetické materiály * MeSH
- buněčná adheze MeSH
- buněčné dělení MeSH
- cévní endotel fyziologie MeSH
- cévní protézy * MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- imobilizované proteiny MeSH
- křemík MeSH
- krevní plazma MeSH
- krevní proteiny MeSH
- lidé MeSH
- oligopeptidy chemie MeSH
- polyethylentereftaláty chemie MeSH
- polymerizace * MeSH
- povrchové vlastnosti MeSH
- řízená tkáňová regenerace přístrojové vybavení MeSH
- sklo MeSH
- syntetická chemie okamžité shody MeSH
- testování materiálů MeSH
- trombóza prevence a kontrola MeSH
- zlato MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- arginyl-glycyl-aspartic acid MeSH Prohlížeč
- azidy MeSH
- biokompatibilní potahované materiály * MeSH
- imobilizované proteiny MeSH
- křemík MeSH
- krevní proteiny MeSH
- oligopeptidy MeSH
- polyethylentereftaláty MeSH
- zlato MeSH
Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide "click" reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.
Zobrazit více v PubMed
Basson M. Cardiovascular disease. Nature. 2008;451:903. doi: 10.1038/451903a. DOI
Drury J.L., Mooney D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials. 2003;24:4337–4351. doi: 10.1016/S0142-9612(03)00340-5. PubMed DOI
Yang S., Leong K.-F., Du Z., Chua C.-K. The Design of Scaffolds for Use in Tissue Engineering. Part II. Rapid Prototyping Techniques. Tissue Eng. 2002;8:1–11. doi: 10.1089/107632702753503009. PubMed DOI
Singh C., Wong C., Wang X. Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries. J. Funct. Biomater. 2015;6:500–525. doi: 10.3390/jfb6030500. PubMed DOI PMC
Ratner B.D. The blood compatibility catastrophe. J. Biomed. Mat. Res. 1993;27:283–287. doi: 10.1002/jbm.820270302. PubMed DOI
Gorbet M.B., Sefton M.V. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25:5681–5703. doi: 10.1016/j.biomaterials.2004.01.023. PubMed DOI
Zilla P., Bezuidenhout D., Human P. Prosthetic vascular grafts: Wrong models, wrong questions and no healing. Biomaterials. 2007;28:5009–5027. doi: 10.1016/j.biomaterials.2007.07.017. PubMed DOI
Cassady A.I., Hidzir N.M., Grøndahl L. Enhancing expanded poly(tetrafluoroethylene) (ePTFE) for biomaterials applications. J. Appl. Pol. Sci. 2014;131:15. doi: 10.1002/app.40533. DOI
Liu X., Yuan L., Li D., Tang Z., Wang Y., Chen G., Chen H., Brash J.L. Blood compatible materials: State of the art. J. Mat. Chem. B. 2014;2:5718–5738. doi: 10.1039/C4TB00881B. PubMed DOI
Weber N., Wendel H.P., Ziemer G. Hemocompatibility of heparin-coated surfaces and the role of selective plasma protein adsorption. Biomaterials. 2002;23:429–439. doi: 10.1016/S0142-9612(01)00122-3. PubMed DOI
Biran R., Pond D. Heparin coatings for improving blood compatibility of medical devices. Adv. Drug Deliv. Rev. 2017;112:12–23. doi: 10.1016/j.addr.2016.12.002. PubMed DOI
Feng L., Andrade J.D. Protein adsorption on low temperature isotropic carbon: V. How is it related to its blood compatibility? J. Biomater. Sci. Polym. Ed. 1995;7:439–452. doi: 10.1163/156856295X00445. PubMed DOI
Kannan R.Y., Salacinski H.J., Butler P.E., Hamilton G., Seifalian A.M. Current status of prosthetic bypass grafts: A review. J. Biomed. Mater. Res. Part. B. 2005;74B:570–581. doi: 10.1002/jbm.b.30247. PubMed DOI
Li Q., Ma L., Gao C. Biomaterials for in situ tissue regeneration: Development and perspectives. J. Mat. Chem. B. 2015;3:8921–8938. doi: 10.1039/C5TB01863C. PubMed DOI
Abdulghani S., Mitchell G.R. Biomaterials for in situ tissue regeneration: A review. Biomolecules. 2019;9:750. doi: 10.3390/biom9110750. PubMed DOI PMC
Harding J.L., Reynolds M.M. Combating medical device fouling. Trends Biotech. 2014;32:140–146. doi: 10.1016/j.tibtech.2013.12.004. PubMed DOI
Yu Q., Zhang Y., Wang H., Brash J., Chen H. Antifouling bioactive surfaces. Acta Biomat. 2011;7:1550–1557. doi: 10.1016/j.actbio.2010.12.021. PubMed DOI
Blaszykowski C., Sheikh S., Thompson M. A survey of state-of-the-art surface chemistries to minimize fouling from human and animal biofluids. Biomat. Sci. 2015;3:1335–1370. doi: 10.1039/C5BM00085H. PubMed DOI
Vaisocherová H., Brynda E., Homola J. Functionalizable low-fouling coatings for label-free biosensing in complex biological media: Advances and applications. Anal. Bioanal. Chem. 2015;407:3927–3953. doi: 10.1007/s00216-015-8606-5. PubMed DOI
De Vos W.M., Leermakers F.A.M., Lindhoud S., Prescott S.W. Modeling the structure and antifouling properties of a polymer brush of grafted comb-polymers. Macromolecules. 2011;44:2334–2342. doi: 10.1021/ma1028642. DOI
Gunkel G., Weinhart M., Becherer T., Haag R., Huck W.T.S. Effect of polymer brush architecture on antibiofouling properties. Biomacromolecules. 2011;12:4169–4172. doi: 10.1021/bm200943m. PubMed DOI
Lísalová H., Brynda E., Houska M., Víšová I., Mrkvová K., Song X.C., Gedeonová E., Surman F., Riedel T., Pop-Georgievski O., et al. Ultralow-Fouling Behavior of Biorecognition Coatings Based on Carboxy-Functional Brushes of Zwitterionic Homo- and Copolymers in Blood Plasma: Functionalization Matters. Anal. Chem. 2017;89:3524–3531. doi: 10.1021/acs.analchem.6b04731. PubMed DOI
Vaisocherová H., Jiang S., Yang W., Cheng G., Cao Z., Homola J., Piliarik M., Zhang Z. Ultralow Fouling and Functionalizable Surface Chemistry Based on a Zwitterionic Polymer Enabling Sensitive and Specific Protein Detection in Undiluted Blood Plasma. Anal. Chem. 2008;80:7894–7901. doi: 10.1021/ac8015888. PubMed DOI
Zhang Z., Chen S., Jiang S. Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules. 2006;7:3311–3315. doi: 10.1021/bm060750m. PubMed DOI
Rodriguez-Emmenegger C., Brynda E., Riedel T., Houska M., Šubr V., Alles A.B., Hasan E., Gautrot J.E., Huck W.T.S. Polymer brushes showing non-fouling in blood plasma challenge the currently accepted design of protein resistant surfaces. Macromol. Rapid Comm. 2011;32:952–957. doi: 10.1002/marc.201100189. PubMed DOI
Vorobii M., Kostina N.Y., Rahimi K., Grama S., Söder D., Pop-Georgievski O., Sturcova A., Horak D., Grottke O., Singh S., et al. Antifouling Microparticles to Scavenge Lipopolysaccharide from Human Blood Plasma. Biomacromolecules. 2019;20:959–968. doi: 10.1021/acs.biomac.8b01583. PubMed DOI
Rodriguez-Emmenegger C., Kylián O., Houska M., Brynda E., Artemenko A., Kousal J., Alles A.B., Biederman H. Substrate-independent approach for the generation of functional protein resistant surfaces. Biomacromolecules. 2011;12:1058–1066. doi: 10.1021/bm101406m. PubMed DOI
De Los Santos Pereira A., Sheikh S., Blaszykowski C., Pop-Georgievski O., Fedorov K., Thompson M., Rodriguez-Emmenegger C. Antifouling Polymer Brushes Displaying Antithrombogenic Surface Properties. Biomacromolecules. 2016;17:1179–1185. doi: 10.1021/acs.biomac.6b00019. PubMed DOI
Surman F., Riedel T., Bruns M., Kostina N.Y., Sedláková Z., Rodriguez-Emmenegger C. Polymer brushes interfacing blood as a route toward high performance blood contacting devices. Macromol. Biosci. 2015;15:636–646. doi: 10.1002/mabi.201400470. PubMed DOI
Zoppe J.O., Ataman N.C., Mocny P., Wang J., Moraes J., Klok H.-A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017;117:1105–1318. doi: 10.1021/acs.chemrev.6b00314. PubMed DOI
Pop-Georgievski O., Rodriguez-Emmenegger C., Pereira A.D.L.S., Proks V., Brynda E., Rypáček F. Biomimetic non-fouling surfaces: Extending the concepts. J. Mat. Chem. B. 2013;1:2859–2867. doi: 10.1039/c3tb20346h. PubMed DOI
Joung Y.K., You S.S., Park K.M., Go D.H., Park K.D. In situ forming, metal-adhesive heparin hydrogel surfaces for blood-compatible coating. Colloids Surf. B. 2012;99:102–107. doi: 10.1016/j.colsurfb.2011.10.047. PubMed DOI
Orski S.V., Fries K.H., Sheppard G.R., Locklin J. High density scaffolding of functional polymer brushes: Surface initiated atom transfer radical polymerization of active esters. Langmuir. 2010;26:2136–2143. doi: 10.1021/la902553f. PubMed DOI
Vaisocherová H., Ševců V., Adam P., Špačková B., Hegnerová K., de los Santos Pereira A., Rodriguez-Emmenegger C., Riedel T., Houska M., Brynda E., et al. Functionalized ultra-low fouling carboxy- and hydroxy-functional surface platforms: Functionalization capacity, biorecognition capability and resistance to fouling from undiluted biological media. Biosens. Bioelectron. 2014;51:150–157. doi: 10.1016/j.bios.2013.07.015. PubMed DOI
Choi J., Schattling P., Jochum F.D., Pyun J., Char K., Theato P. Functionalization and patterning of reactive polymer brushes based on surface reversible addition and fragmentation chain transfer polymerization. J. Pol. Sci. Part. A Pol. Chem. 2012;50:4010–4018. doi: 10.1002/pola.26200. DOI
Lowe A.B. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis: A first update. Pol. Chem. 2014;5:4820–4870. doi: 10.1039/C4PY00339J. DOI
Mohammad Mahdi Dadfar S., Sekula-Neuner S., Trouillet V., Hirtz M. A Comparative Study of Thiol-Terminated Surface Modification by Click Reactions: Thiol-yne Coupling versus Thiol-ene Michael Addition. Adv. Mat. Interfaces. 2018;5:1–9.
Proks V., Jaroš J., Pop-Georgievski O., Kučka J., Popelka Š., Dvořák P., Hampl A., Rypáček F. “Click & seed” approach to the biomimetic modification of material surfaces. Macromol. Biosci. 2012;12:1232–1242. PubMed
Parrillo V., de los Santos Pereira A., Riedel T., Rodriguez-Emmenegger C. Catalyst-free “click” functionalization of polymer brushes preserves antifouling properties enabling detection in blood plasma. Anal. Chim. Acta. 2017;971:78–87. doi: 10.1016/j.aca.2017.03.007. PubMed DOI
Poręba R., de Los Santos Pereira A., Pola R., Jiang S., Pop-Georgievski O., Sedláková Z., Schönherr H. “Clickable” and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide-Specific Cell Attachment. Macromol. Biosci. 2020;20:e1900354. doi: 10.1002/mabi.201900354. PubMed DOI
De Rosa L., Di Stasi R., D’Andrea L.D. Pro-angiogenic peptides in biomedicine. Arch. Biochem. Biophys. 2018;660:72–86. doi: 10.1016/j.abb.2018.10.010. PubMed DOI
Hynes R.O., Zhao Q. The evolution of cell adhesion. J. Cell Biol. 2000;150:89–96. doi: 10.1083/jcb.150.2.F89. PubMed DOI
Psarra E., Foster E., König U., You J., Ueda Y., Eichhorn K.J., Müller M., Stamm M., Revzin A., Uhlmann P. Growth Factor-Bearing Polymer Brushes—Versatile Bioactive Substrates Influencing Cell Response. Biomacromolecules. 2015;16:3530–3542. doi: 10.1021/acs.biomac.5b00967. PubMed DOI
Hsiong S.X., Huebsch N., Fischbach C., Kong H.J., Mooney D.J. Integrin-adhesion ligand bond formation of preosteoblasts and stem cells in three-dimensional RGD presenting matrices. Biomacromolecules. 2008;9:1843–1851. doi: 10.1021/bm8000606. PubMed DOI PMC
Ruoslahti E. Rgd and Other Recognition Sequences for Integrins. Annu. Rev. Cell Dev. Biol. 2002;12:697–715. doi: 10.1146/annurev.cellbio.12.1.697. PubMed DOI
Narasimhan S.K., Sejwal P., Zhu S., Luk Y.Y. Enhanced cell adhesion and mature intracellular structure promoted by squaramide-based RGD mimics on bioinert surfaces. Bioorg. Med. Chem. 2013;21:2210–2216. doi: 10.1016/j.bmc.2013.02.032. PubMed DOI
De los Santos Pereira A., Riedel T., Brynda E., Rodriguez-Emmenegger C. Hierarchical antifouling brushes for biosensing applications. Sens. Actuators B. 2014;202:1313–1321. doi: 10.1016/j.snb.2014.06.075. DOI
Pop-Georgievski O., Zimmermann R., Kotelnikov I., Proks V., Romeis D., Kučka J., Caspari A., Rypáček F., Werner C. Impact of Bioactive Peptide Motifs on Molecular Structure, Charging, and Nonfouling Properties of Poly(ethylene oxide) Brushes. Langmuir. 2018;34:6010–6020. doi: 10.1021/acs.langmuir.8b00441. PubMed DOI
Rodriguez-Emmenegger C., Janel S., de los Santos Pereira A., Bruns M., Lafont F. Quantifying bacterial adhesion on antifouling polymer brushes via single-cell force spectroscopy. Pol. Chem. 2015;6:5740–5751. doi: 10.1039/C5PY00197H. DOI
Jones D.M., Brown A.A., Huck W.T.S. Surface-Initiated Polymerizations in Aqueous Media: Effect of Initiator Density. Langmuir. 2002;18:1265–1269. doi: 10.1021/la011365f. DOI