Direct and Indirect Biomimetic Peptide Modification of Alginate: Efficiency, Side Reactions, and Cell Response

. 2021 May 27 ; 22 (11) : . [epub] 20210527

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34072085

Grantová podpora
18-05510S Grantová Agentura České Republiky
20-07313S Grantová Agentura České Republiky
MUNI/A/1689/2020 Masarykova Univerzita
CZ.02.1.01/0.0/0.0/16_026/0008451 Brno City Municipality - Brno Ph.D. Talent 2018 and European Regional Development Fund

In the fast-developing field of tissue engineering there is a constant demand for new materials as scaffolds for cell seeding, which can better mimic a natural extracellular matrix as well as control cell behavior. Among other materials, polysaccharides are widely used for this purpose. One of the main candidates for scaffold fabrication is alginate. However, it lacks sites for cell adhesion. That is why one of the steps toward the development of suitable scaffolds for cells is the introduction of the biofunctionality to the alginate structure. In this work we focused on bone-sialoprotein derived peptide (TYRAY) conjugation to the molecule of alginate. Here the comparison study on four different approaches of peptide conjugation was performed including traditional and novel modification methods, based on 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxy succinimide (EDC/NHS), 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)-4-methylmorpholinium chloride (DMTMM), thiol-Michael addition and Cu-catalyzed azide-alkyne cycloaddition reactions. It was shown that the combination of the alginate amidation with the use of and subsequent Cu-catalyzed azide-alkyne cycloaddition led to efficient peptide conjugation, which was proven with both NMR and XPS methods. Moreover, the cell culture experiment proved the positive effect of peptide presence on the adhesion of human embryonic stem cells.

Zobrazit více v PubMed

Pina S., Ribeiro V.P., Marques C.F., Maia F.R., Silva T.H., Reis R.L., Oliveira J.M. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials. 2019;12:1824. doi: 10.3390/ma12111824. PubMed DOI PMC

Rastogi P., Kandasubramanian B. Review of Alginate-Based Hydrogel Bioprinting for Application in Tissue Engineering. Biofabrication. 2019;11:042001. doi: 10.1088/1758-5090/ab331e. PubMed DOI

Piras C.C., Smith D.K. Multicomponent Polysaccharide Alginate-Based Bioinks. J. Mater. Chem. B. 2020;8:8171–8188. doi: 10.1039/D0TB01005G. PubMed DOI

Dalheim M.Ø., Vanacker J., Najmi M.A., Aachmann F.L., Strand B.L., Christensen B.E. Efficient Functionalization of Alginate Biomaterials. Biomaterials. 2016;80:146–156. doi: 10.1016/j.biomaterials.2015.11.043. PubMed DOI

Huettner N., Dargaville T.R., Forget A. Discovering Cell-Adhesion Peptides in Tissue Engineering: Beyond RGD. Trends Biotechnol. 2018;36:372–383. doi: 10.1016/j.tibtech.2018.01.008. PubMed DOI

Richardson T., Wiegand C., Adisa F., Ravikumar K., Candiello J., Kumta P., Banerjee I. Engineered Peptide Modified Hydrogel Platform for Propagation of Human Pluripotent Stem Cells. Acta Biomater. 2020;113:228–239. doi: 10.1016/j.actbio.2020.06.034. PubMed DOI

Jain E., Neal S., Graf H., Tan X., Balasubramaniam R., Huebsch N. Copper-Free Azide–Alkyne Cycloaddition for Peptide Modification of Alginate Hydrogels. ACS Appl. Bio Mater. 2021;4:1229–1237. doi: 10.1021/acsabm.0c00976. PubMed DOI

Dhoot N.O., Tobias C.A., Fischer I., Wheatley M.A. Peptide-Modified Alginate Surfaces as a Growth Permissive Substrate for Neurite Outgrowth. J. Biomed. Mater. Res.-Part A. 2004;71:191–200. doi: 10.1002/jbm.a.30103. PubMed DOI

Jing J., Fournier A., Szarpak-Jankowska A., Block M.R., Auzély-Velty R. Type, Density, and Presentation of Grafted Adhesion Peptides on Polysaccharide-Based Hydrogels Control Preosteoblast Behavior and Differentiation. Biomacromolecules. 2015;16:715–722. doi: 10.1021/bm501613u. PubMed DOI

Melkoumian Z., Weber J.L., Weber D.M., Fadeev A.G., Zhou Y., Dolley-Sonneville P., Yang J., Qiu L., Priest C.A., Shogbon C., et al. Synthetic Peptide-Acrylate Surfaces for Long-Term Self-Renewal and Cardiomyocyte Differentiation of Human Embryonic Stem Cells. Nat. Biotechnol. 2010;28:606–610. doi: 10.1038/nbt.1629. PubMed DOI

Dawson E., Mapili G., Erickson K., Taqvi S., Roy K. Biomaterials for Stem Cell Differentiation. Adv. Drug Deliv. Rev. 2008;60:215–228. doi: 10.1016/j.addr.2007.08.037. PubMed DOI

Chen Y.M., Chen L.H., Li M.P., Li H.F., Higuchi A., Kumar S.S., Ling Q.D., Alarfaj A.A., Munusamy M.A., Chang Y., et al. Xeno-Free Culture of Human Pluripotent Stem Cells on Oligopeptide-Grafted Hydrogels with Various Molecular Designs. Sci. Rep. 2017;7:1–16. doi: 10.1038/srep45146. PubMed DOI PMC

Hermanson G.T. Chapter 4-Zero-Length Crosslinkers. In: Hermanson G.T., editor. Bioconjugate Techniques. 3rd ed. Academic Press; Boston, MA, USA: 2013. pp. 259–273. DOI

Schanté C., Zuber G., Herlin C., Vandamme T.F. Synthesis of N-Alanyl-Hyaluronamide with High Degree of Substitution for Enhanced Resistance to Hyaluronidase-Mediated Digestion. Carbohydr. Polym. 2011;86:747–752. doi: 10.1016/j.carbpol.2011.05.017. DOI

Babic M., Horak D., Jendelova P., Herynek V., Proks V., Vanecek V., Lesny P., Sykova E. The Use of Dopamine-Hyaluronate Associatecoated Maghemite Nanoparticles to Label Cells. Int. J. Nanomed. 2012;7:1461–1474. doi: 10.2147/IJN.S28658. PubMed DOI PMC

Dunetz J.R., Magano J., Weisenburger G.A. Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Org. Process. Res. Dev. 2016;20:140–177. doi: 10.1021/op500305s. DOI

Kunishima M., Kawachi C., Morita J., Terao K., Iwasaki F., Tani S. 4-(4,6-Dimethoxy-1,3,5-Triazin-2-Yl)-4-Methylmorpholinium Chloride: An Efficient Condensing Agent Leading to the Formation of Amides and Esters. Tetrahedron. 1999;55:13159–13170. doi: 10.1016/S0040-4020(99)00809-1. DOI

Labre F., Mathieu S., Chaud P., Morvan P.Y., Vallée R., Helbert W., Fort S. DMTMM-Mediated Amidation of Alginate Oligosaccharides Aimed at Modulating Their Interaction with Proteins. Carbohydr. Polym. 2018;184:427–434. doi: 10.1016/j.carbpol.2017.12.069. PubMed DOI

Loebel C., D’Este M., Alini M., Zenobi-Wong M., Eglin D. Precise Tailoring of Tyramine-Based Hyaluronan Hydrogel Properties Using DMTMM Conjugation. Carbohydr. Polym. 2015;115:325–333. doi: 10.1016/j.carbpol.2014.08.097. PubMed DOI

Nagahama K., Kimura Y., Takemoto A. Living Functional Hydrogels Generated by Bioorthogonal Cross-Linking Reactions of Azide-Modified Cells with Alkyne-Modified Polymers. Nat. Commun. 2018;9:1–11. doi: 10.1038/s41467-018-04699-3. PubMed DOI PMC

Cobo I., Li M., Sumerlin B.S., Perrier S. Smart Hybrid Materials by Conjugation of Responsive Polymers to Biomacromolecules. Nat. Mater. 2014;14:143–159. doi: 10.1038/nmat4106. PubMed DOI

Lowe A.B. Thiol-Ene “Click” Reactions and Recent Applications in Polymer and Materials Synthesis. Polym. Chem. 2010;1:17–36. doi: 10.1039/B9PY00216B. DOI

Perera T.H., Howell S.M., Callahan L.A.S. Manipulation of Extracellular Matrix Remodeling and Neurite Extension by Mouse Embryonic Stem Cells Using IKVAV and LRE Peptide Tethering in Hyaluronic Acid Matrices. Biomacromolecules. 2019;20:3009–3020. doi: 10.1021/acs.biomac.9b00578. PubMed DOI

Meng X., Edgar K.J. “Click” Reactions in Polysaccharide Modification. Prog. Polym. Sci. 2016;53:52–85. doi: 10.1016/j.progpolymsci.2015.07.006. DOI

Kenry, Liu B. Bio-Orthogonal Click Chemistry for In Vivo Bioimaging. Trends Chem. 2019;1:763–778. doi: 10.1016/j.trechm.2019.08.003. DOI

Sletten E.M., Bertozzi C.R. Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angew. Chem. Int. Ed. 2009;48:6974–6998. doi: 10.1002/anie.200900942. PubMed DOI PMC

Bernstein-Levi O., Ochbaum G., Bitton R. The Effect of Covalently Linked RGD Peptide on the Conformation of Polysaccharides in Aqueous Solutions. Colloids Surf. B Biointerfaces. 2016;137:214–220. doi: 10.1016/j.colsurfb.2015.06.042. PubMed DOI

Camacho P., Busari H., Seims K.B., Schwarzenberg P., Dailey H.L., Chow L.W. 3D Printing with Peptide–Polymer Conjugates for Single-Step Fabrication of Spatially Functionalized Scaffolds. Biomater. Sci. 2019;7:4237–4247. doi: 10.1039/C9BM00887J. PubMed DOI

D’Este M., Eglin D., Alini M. A Systematic Analysis of DMTMM vs EDC/NHS for Ligation of Amines to Hyaluronan in Water. Carbohydr. Polym. 2014;108:239–246. doi: 10.1016/j.carbpol.2014.02.070. PubMed DOI

Wang G., Zhu J., Chen X., Dong H., Li Q., Zeng L., Cao X. Alginate Based Antimicrobial Hydrogels Formed by Integrating Diels-Alder “Click Chemistry” and the Thiol-Ene Reaction. RSC Adv. 2018;8:11036–11042. doi: 10.1039/C8RA00668G. PubMed DOI PMC

Fisher S.A., Baker A.E.G., Shoichet M.S. Designing Peptide and Protein Modified Hydrogels: Selecting the Optimal Conjugation Strategy. J. Am. Chem. Soc. 2017;139:7416–7427. doi: 10.1021/jacs.7b00513. PubMed DOI

Gennari A., Wedgwood J., Lallana E., Francini N., Tirelli N. Thiol-Based Michael-Type Addition. A Systematic Evaluation of Its Controlling Factors. Tetrahedron. 2020;76:131637. doi: 10.1016/j.tet.2020.131637. DOI

Rodrigues J.R., Lagoa R. Copper Ions Binding in Cu-Alginate Gelation. J. Carbohydr. Chem. 2006;25:219–232. doi: 10.1080/07328300600732956. DOI

Lee K.Y., Mooney D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012;37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003. PubMed DOI PMC

Rodionov V.O., Presolski S.I., Díaz Díaz D., Fokin V.V., Finn M.G. Ligand-Accelerated Cu-Catalyzed Azide−Alkyne Cycloaddition: A Mechanistic Report. J. Am. Chem. Soc. 2007;129:12705–12712. doi: 10.1021/ja072679d. PubMed DOI

Oladeinde O.A., Hong S.Y., Holland R.J., MacIag A.E., Keefer L.K., Saavedra J.E., Nandurdikar R.S. “Click” Reaction in Conjunction with Diazeniumdiolate Chemistry: Developing High-Load Nitric Oxide Donors. Org. Lett. 2010;12:4256–4259. doi: 10.1021/ol101645k. PubMed DOI PMC

Sivkova R., Táborská J., Reparaz A., de los Santos Pereira A., Kotelnikov I., Proks V., Kučka J., Svoboda J., Riedel T., Pop-Georgievski O. Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications. Int. J. Mol. Sci. 2020;21:6800. doi: 10.3390/ijms21186800. PubMed DOI PMC

Pop-Georgievski O., Zimmermann R., Kotelnikov I., Proks V., Romeis D., Kučka J., Caspari A., Rypáček F., Werner C. Impact of Bioactive Peptide Motifs on Molecular Structure, Charging, and Nonfouling Properties of Poly(Ethylene Oxide) Brushes. Langmuir. 2018;34:6010–6020. doi: 10.1021/acs.langmuir.8b00441. PubMed DOI

Mirdamadi E., Tashman J.W., Shiwarski D.J., Palchesko R.N., Feinberg A.W. FRESH 3D Bioprinting a Full-Size Model of the Human Heart. ACS Biomater. Sci. Eng. 2020;6:6453–6459. doi: 10.1021/acsbiomaterials.0c01133. PubMed DOI

Jia J., Richards D.J., Pollard S., Tan Y., Rodriguez J., Visconti R.P., Trusk T.C., Yost M.J., Yao H., Markwald R.R., et al. Engineering Alginate as Bioink for Bioprinting. Acta Biomater. 2014;10:4323–4331. doi: 10.1016/j.actbio.2014.06.034. PubMed DOI PMC

Presolski S.I., Hong V.P., Finn M.G. Copper-Catalyzed Azide–Alkyne Click Chemistry for Bioconjugation. Curr. Protoc. Chem. Biol. 2011;3:153–162. doi: 10.1002/9780470559277.ch110148. PubMed DOI PMC

Adewumi O., Aflatoonian B., Ahrlund-Richter L., Amit M., Andrews P.W., Beighton G., Bello P.A., Benvenisty N., Berry L.S., Bevan S., et al. Characterization of Human Embryonic Stem Cell Lines by the International Stem Cell Initiative. Nat. Biotechnol. 2007;25:803–816. doi: 10.1038/nbt1318. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...