Direct and Indirect Biomimetic Peptide Modification of Alginate: Efficiency, Side Reactions, and Cell Response
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-05510S
Grantová Agentura České Republiky
20-07313S
Grantová Agentura České Republiky
MUNI/A/1689/2020
Masarykova Univerzita
CZ.02.1.01/0.0/0.0/16_026/0008451
Brno City Municipality - Brno Ph.D. Talent 2018 and European Regional Development Fund
PubMed
34072085
PubMed Central
PMC8198284
DOI
10.3390/ijms22115731
PII: ijms22115731
Knihovny.cz E-zdroje
- Klíčová slova
- NMR, XPS, adhesion-promoting peptide, alginate, cell adhesion, hESC, polysaccharide modification,
- MeSH
- algináty chemie MeSH
- aminy chemie MeSH
- biomimetika * metody MeSH
- buněčná adheze MeSH
- buněčné kultury MeSH
- buněčné linie MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární struktura MeSH
- peptidy chemie farmakologie MeSH
- syntetická chemie okamžité shody MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury * MeSH
- viabilita buněk účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- algináty MeSH
- aminy MeSH
- peptidy MeSH
In the fast-developing field of tissue engineering there is a constant demand for new materials as scaffolds for cell seeding, which can better mimic a natural extracellular matrix as well as control cell behavior. Among other materials, polysaccharides are widely used for this purpose. One of the main candidates for scaffold fabrication is alginate. However, it lacks sites for cell adhesion. That is why one of the steps toward the development of suitable scaffolds for cells is the introduction of the biofunctionality to the alginate structure. In this work we focused on bone-sialoprotein derived peptide (TYRAY) conjugation to the molecule of alginate. Here the comparison study on four different approaches of peptide conjugation was performed including traditional and novel modification methods, based on 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxy succinimide (EDC/NHS), 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)-4-methylmorpholinium chloride (DMTMM), thiol-Michael addition and Cu-catalyzed azide-alkyne cycloaddition reactions. It was shown that the combination of the alginate amidation with the use of and subsequent Cu-catalyzed azide-alkyne cycloaddition led to efficient peptide conjugation, which was proven with both NMR and XPS methods. Moreover, the cell culture experiment proved the positive effect of peptide presence on the adhesion of human embryonic stem cells.
Zobrazit více v PubMed
Pina S., Ribeiro V.P., Marques C.F., Maia F.R., Silva T.H., Reis R.L., Oliveira J.M. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials. 2019;12:1824. doi: 10.3390/ma12111824. PubMed DOI PMC
Rastogi P., Kandasubramanian B. Review of Alginate-Based Hydrogel Bioprinting for Application in Tissue Engineering. Biofabrication. 2019;11:042001. doi: 10.1088/1758-5090/ab331e. PubMed DOI
Piras C.C., Smith D.K. Multicomponent Polysaccharide Alginate-Based Bioinks. J. Mater. Chem. B. 2020;8:8171–8188. doi: 10.1039/D0TB01005G. PubMed DOI
Dalheim M.Ø., Vanacker J., Najmi M.A., Aachmann F.L., Strand B.L., Christensen B.E. Efficient Functionalization of Alginate Biomaterials. Biomaterials. 2016;80:146–156. doi: 10.1016/j.biomaterials.2015.11.043. PubMed DOI
Huettner N., Dargaville T.R., Forget A. Discovering Cell-Adhesion Peptides in Tissue Engineering: Beyond RGD. Trends Biotechnol. 2018;36:372–383. doi: 10.1016/j.tibtech.2018.01.008. PubMed DOI
Richardson T., Wiegand C., Adisa F., Ravikumar K., Candiello J., Kumta P., Banerjee I. Engineered Peptide Modified Hydrogel Platform for Propagation of Human Pluripotent Stem Cells. Acta Biomater. 2020;113:228–239. doi: 10.1016/j.actbio.2020.06.034. PubMed DOI
Jain E., Neal S., Graf H., Tan X., Balasubramaniam R., Huebsch N. Copper-Free Azide–Alkyne Cycloaddition for Peptide Modification of Alginate Hydrogels. ACS Appl. Bio Mater. 2021;4:1229–1237. doi: 10.1021/acsabm.0c00976. PubMed DOI
Dhoot N.O., Tobias C.A., Fischer I., Wheatley M.A. Peptide-Modified Alginate Surfaces as a Growth Permissive Substrate for Neurite Outgrowth. J. Biomed. Mater. Res.-Part A. 2004;71:191–200. doi: 10.1002/jbm.a.30103. PubMed DOI
Jing J., Fournier A., Szarpak-Jankowska A., Block M.R., Auzély-Velty R. Type, Density, and Presentation of Grafted Adhesion Peptides on Polysaccharide-Based Hydrogels Control Preosteoblast Behavior and Differentiation. Biomacromolecules. 2015;16:715–722. doi: 10.1021/bm501613u. PubMed DOI
Melkoumian Z., Weber J.L., Weber D.M., Fadeev A.G., Zhou Y., Dolley-Sonneville P., Yang J., Qiu L., Priest C.A., Shogbon C., et al. Synthetic Peptide-Acrylate Surfaces for Long-Term Self-Renewal and Cardiomyocyte Differentiation of Human Embryonic Stem Cells. Nat. Biotechnol. 2010;28:606–610. doi: 10.1038/nbt.1629. PubMed DOI
Dawson E., Mapili G., Erickson K., Taqvi S., Roy K. Biomaterials for Stem Cell Differentiation. Adv. Drug Deliv. Rev. 2008;60:215–228. doi: 10.1016/j.addr.2007.08.037. PubMed DOI
Chen Y.M., Chen L.H., Li M.P., Li H.F., Higuchi A., Kumar S.S., Ling Q.D., Alarfaj A.A., Munusamy M.A., Chang Y., et al. Xeno-Free Culture of Human Pluripotent Stem Cells on Oligopeptide-Grafted Hydrogels with Various Molecular Designs. Sci. Rep. 2017;7:1–16. doi: 10.1038/srep45146. PubMed DOI PMC
Hermanson G.T. Chapter 4-Zero-Length Crosslinkers. In: Hermanson G.T., editor. Bioconjugate Techniques. 3rd ed. Academic Press; Boston, MA, USA: 2013. pp. 259–273. DOI
Schanté C., Zuber G., Herlin C., Vandamme T.F. Synthesis of N-Alanyl-Hyaluronamide with High Degree of Substitution for Enhanced Resistance to Hyaluronidase-Mediated Digestion. Carbohydr. Polym. 2011;86:747–752. doi: 10.1016/j.carbpol.2011.05.017. DOI
Babic M., Horak D., Jendelova P., Herynek V., Proks V., Vanecek V., Lesny P., Sykova E. The Use of Dopamine-Hyaluronate Associatecoated Maghemite Nanoparticles to Label Cells. Int. J. Nanomed. 2012;7:1461–1474. doi: 10.2147/IJN.S28658. PubMed DOI PMC
Dunetz J.R., Magano J., Weisenburger G.A. Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Org. Process. Res. Dev. 2016;20:140–177. doi: 10.1021/op500305s. DOI
Kunishima M., Kawachi C., Morita J., Terao K., Iwasaki F., Tani S. 4-(4,6-Dimethoxy-1,3,5-Triazin-2-Yl)-4-Methylmorpholinium Chloride: An Efficient Condensing Agent Leading to the Formation of Amides and Esters. Tetrahedron. 1999;55:13159–13170. doi: 10.1016/S0040-4020(99)00809-1. DOI
Labre F., Mathieu S., Chaud P., Morvan P.Y., Vallée R., Helbert W., Fort S. DMTMM-Mediated Amidation of Alginate Oligosaccharides Aimed at Modulating Their Interaction with Proteins. Carbohydr. Polym. 2018;184:427–434. doi: 10.1016/j.carbpol.2017.12.069. PubMed DOI
Loebel C., D’Este M., Alini M., Zenobi-Wong M., Eglin D. Precise Tailoring of Tyramine-Based Hyaluronan Hydrogel Properties Using DMTMM Conjugation. Carbohydr. Polym. 2015;115:325–333. doi: 10.1016/j.carbpol.2014.08.097. PubMed DOI
Nagahama K., Kimura Y., Takemoto A. Living Functional Hydrogels Generated by Bioorthogonal Cross-Linking Reactions of Azide-Modified Cells with Alkyne-Modified Polymers. Nat. Commun. 2018;9:1–11. doi: 10.1038/s41467-018-04699-3. PubMed DOI PMC
Cobo I., Li M., Sumerlin B.S., Perrier S. Smart Hybrid Materials by Conjugation of Responsive Polymers to Biomacromolecules. Nat. Mater. 2014;14:143–159. doi: 10.1038/nmat4106. PubMed DOI
Lowe A.B. Thiol-Ene “Click” Reactions and Recent Applications in Polymer and Materials Synthesis. Polym. Chem. 2010;1:17–36. doi: 10.1039/B9PY00216B. DOI
Perera T.H., Howell S.M., Callahan L.A.S. Manipulation of Extracellular Matrix Remodeling and Neurite Extension by Mouse Embryonic Stem Cells Using IKVAV and LRE Peptide Tethering in Hyaluronic Acid Matrices. Biomacromolecules. 2019;20:3009–3020. doi: 10.1021/acs.biomac.9b00578. PubMed DOI
Meng X., Edgar K.J. “Click” Reactions in Polysaccharide Modification. Prog. Polym. Sci. 2016;53:52–85. doi: 10.1016/j.progpolymsci.2015.07.006. DOI
Kenry, Liu B. Bio-Orthogonal Click Chemistry for In Vivo Bioimaging. Trends Chem. 2019;1:763–778. doi: 10.1016/j.trechm.2019.08.003. DOI
Sletten E.M., Bertozzi C.R. Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angew. Chem. Int. Ed. 2009;48:6974–6998. doi: 10.1002/anie.200900942. PubMed DOI PMC
Bernstein-Levi O., Ochbaum G., Bitton R. The Effect of Covalently Linked RGD Peptide on the Conformation of Polysaccharides in Aqueous Solutions. Colloids Surf. B Biointerfaces. 2016;137:214–220. doi: 10.1016/j.colsurfb.2015.06.042. PubMed DOI
Camacho P., Busari H., Seims K.B., Schwarzenberg P., Dailey H.L., Chow L.W. 3D Printing with Peptide–Polymer Conjugates for Single-Step Fabrication of Spatially Functionalized Scaffolds. Biomater. Sci. 2019;7:4237–4247. doi: 10.1039/C9BM00887J. PubMed DOI
D’Este M., Eglin D., Alini M. A Systematic Analysis of DMTMM vs EDC/NHS for Ligation of Amines to Hyaluronan in Water. Carbohydr. Polym. 2014;108:239–246. doi: 10.1016/j.carbpol.2014.02.070. PubMed DOI
Wang G., Zhu J., Chen X., Dong H., Li Q., Zeng L., Cao X. Alginate Based Antimicrobial Hydrogels Formed by Integrating Diels-Alder “Click Chemistry” and the Thiol-Ene Reaction. RSC Adv. 2018;8:11036–11042. doi: 10.1039/C8RA00668G. PubMed DOI PMC
Fisher S.A., Baker A.E.G., Shoichet M.S. Designing Peptide and Protein Modified Hydrogels: Selecting the Optimal Conjugation Strategy. J. Am. Chem. Soc. 2017;139:7416–7427. doi: 10.1021/jacs.7b00513. PubMed DOI
Gennari A., Wedgwood J., Lallana E., Francini N., Tirelli N. Thiol-Based Michael-Type Addition. A Systematic Evaluation of Its Controlling Factors. Tetrahedron. 2020;76:131637. doi: 10.1016/j.tet.2020.131637. DOI
Rodrigues J.R., Lagoa R. Copper Ions Binding in Cu-Alginate Gelation. J. Carbohydr. Chem. 2006;25:219–232. doi: 10.1080/07328300600732956. DOI
Lee K.Y., Mooney D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012;37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003. PubMed DOI PMC
Rodionov V.O., Presolski S.I., Díaz Díaz D., Fokin V.V., Finn M.G. Ligand-Accelerated Cu-Catalyzed Azide−Alkyne Cycloaddition: A Mechanistic Report. J. Am. Chem. Soc. 2007;129:12705–12712. doi: 10.1021/ja072679d. PubMed DOI
Oladeinde O.A., Hong S.Y., Holland R.J., MacIag A.E., Keefer L.K., Saavedra J.E., Nandurdikar R.S. “Click” Reaction in Conjunction with Diazeniumdiolate Chemistry: Developing High-Load Nitric Oxide Donors. Org. Lett. 2010;12:4256–4259. doi: 10.1021/ol101645k. PubMed DOI PMC
Sivkova R., Táborská J., Reparaz A., de los Santos Pereira A., Kotelnikov I., Proks V., Kučka J., Svoboda J., Riedel T., Pop-Georgievski O. Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications. Int. J. Mol. Sci. 2020;21:6800. doi: 10.3390/ijms21186800. PubMed DOI PMC
Pop-Georgievski O., Zimmermann R., Kotelnikov I., Proks V., Romeis D., Kučka J., Caspari A., Rypáček F., Werner C. Impact of Bioactive Peptide Motifs on Molecular Structure, Charging, and Nonfouling Properties of Poly(Ethylene Oxide) Brushes. Langmuir. 2018;34:6010–6020. doi: 10.1021/acs.langmuir.8b00441. PubMed DOI
Mirdamadi E., Tashman J.W., Shiwarski D.J., Palchesko R.N., Feinberg A.W. FRESH 3D Bioprinting a Full-Size Model of the Human Heart. ACS Biomater. Sci. Eng. 2020;6:6453–6459. doi: 10.1021/acsbiomaterials.0c01133. PubMed DOI
Jia J., Richards D.J., Pollard S., Tan Y., Rodriguez J., Visconti R.P., Trusk T.C., Yost M.J., Yao H., Markwald R.R., et al. Engineering Alginate as Bioink for Bioprinting. Acta Biomater. 2014;10:4323–4331. doi: 10.1016/j.actbio.2014.06.034. PubMed DOI PMC
Presolski S.I., Hong V.P., Finn M.G. Copper-Catalyzed Azide–Alkyne Click Chemistry for Bioconjugation. Curr. Protoc. Chem. Biol. 2011;3:153–162. doi: 10.1002/9780470559277.ch110148. PubMed DOI PMC
Adewumi O., Aflatoonian B., Ahrlund-Richter L., Amit M., Andrews P.W., Beighton G., Bello P.A., Benvenisty N., Berry L.S., Bevan S., et al. Characterization of Human Embryonic Stem Cell Lines by the International Stem Cell Initiative. Nat. Biotechnol. 2007;25:803–816. doi: 10.1038/nbt1318. PubMed DOI