"click”-chemistry Dotaz Zobrazit nápovědu
A click chemistry approach based on the reaction between alkynylflavins and mono(6-azido-6-deoxy)-β-cyclodextrin has proven to be a useful tool for the synthesis of flavin-cyclodextrin conjugates studied as monooxygenase mimics in enantioselective sulfoxidations.
The replication of nuclear and mitochondrial DNA are basic processes assuring the doubling of the genetic information of eukaryotic cells. In research of the basic principles of DNA replication, and also in the studies focused on the cell cycle, an important role is played by artificially-prepared nucleoside and nucleotide analogues that serve as markers of newly synthesized DNA. These analogues are incorporated into the DNA during DNA replication, and are subsequently visualized. Several methods are used for their detection, including the highly popular click chemistry. This review aims to provide the readers with basic information about the various possibilities of the detection of replication activity using nucleoside and nucleotide analogues, and to show the strengths and weaknesses of those different detection systems, including click chemistry for microscopic studies.
- MeSH
- DNA chemie genetika MeSH
- halogenace MeSH
- hybridizace in situ MeSH
- imunohistochemie MeSH
- izotopové značení MeSH
- měď chemie MeSH
- nukleosidy chemie MeSH
- nukleotidy chemie MeSH
- radionuklidy MeSH
- replikace DNA * MeSH
- syntetická chemie okamžité shody MeSH
- výzkum MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Auxin is a key plant regulatory molecule, which acts upon a plethora of cellular processes, including those related to cell differentiation and elongation. Despite the stunning progress in all disciplines of auxin research, the mechanisms of auxin-mediated rapid promotion of cell expansion and underlying rearrangement of cell wall components are poorly understood. This is partly due to the limitations of current methodologies for probing auxin. Here we describe a click chemistry-based approach, using an azido derivative of indole-3-propionic acid. This compound is as an active auxin analogue, which can be tagged in situ. Using this new tool, we demonstrate the existence of putative auxin binding sites in the cell walls of expanding/elongating cells. These binding sites are of protein nature but are distinct from those provided by the extensively studied AUXIN BINDING PROTEIN 1 (ABP1). Using immunohistochemistry, we have shown the apoplastic presence of endogenous auxin epitopes recognised by an anti-IAA antibody. Our results are intriguingly in line with previous observations suggesting some transcription-independent (non-genomic) activity of auxin in cell elongation.
Triterpenoids are natural compounds with a large variety of biological activities such as anticancer, antiviral, antibacterial, antifungal, antiparazitic, antiinflammatory and others. Despite their low toxicity and simple availability from the natural resources, their clinical use is still severely limited by their higher IC50 and worse pharmacological properties than in the currently used therapeutics. This fact encouraged a number of researchers to develop new terpenic derivatives more suitable for the potential clinical use. This review summarizes a new approach to improve both, the activity and ADME-Tox properties by connecting active terpenes to another modifying molecules using click reactions. Within the past few years, this synthetic approach was well explored yielding a lot of great improvements of the parent compounds along with some less successful attempts. A large quantity of the new compounds presented here are superior in both activity and ADME-Tox properties to their parents. This review should serve the researchers who need to promote their hit triterpenic structures towards their clinical use and it is intended as a guide for the chemical synthesis of better drug candidates.
- MeSH
- antitumorózní látky chemická syntéza farmakologie MeSH
- antivirové látky chemická syntéza farmakologie MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- syntetická chemie okamžité shody * MeSH
- terpeny chemická syntéza farmakologie MeSH
- triazoly chemická syntéza farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
New synthetic aminooxy lipid was designed and synthesized as a building block for the formulation of functionalised nanoliposomes (presenting onto the outer surface of aminooxy groups) by microfluidic mixing. Orthogonal binding of cellular mannan (Candida glabrata (CCY 26-20-1) onto the outer surface of functionalised nanoliposomes was modified by orthogonal binding of reducing termini of mannans to oxime lipids via a click chemistry reaction based on aminooxy coupling (oxime ligation). The aminooxy lipid was proved as a suitable active component for preparation of functionalised nanoliposomes by the microfluidic mixing method performed with the instrument NanoAssemblrTM. This "on-chip technology" can be easily scaled-up. The structure of mannan-liposomes was visualized by transmission and scanning electron microscopy, including immunogold staining of recombinant mannan receptor bound onto mannosylated-liposomes. The observed structures are in a good correlation with data obtained by DLS, NTA, and TPRS methods. In vitro experiments on human and mouse dendritic cells demonstrate selective internalisation of fluorochrome-labelled mannan-liposomes and their ability to stimulate DC comparable to lipopolysaccharide. We describe a potentially new drug delivery platform for mannan receptor-targeted antimicrobial drugs as well as for immunotherapeutics. Furthermore, the platform based on mannans bound orthogonally onto the surface of nanoliposomes represents a self-adjuvanted carrier for construction of liposome-based recombinant vaccines for both systemic and mucosal routes of administration.
- MeSH
- adjuvancia imunologická farmakologie MeSH
- antigeny povrchové metabolismus MeSH
- Candida glabrata chemie MeSH
- dendritické buňky imunologie MeSH
- hydroxylaminy chemická syntéza chemie MeSH
- lektiny typu C imunologie MeSH
- lektiny vázající mannosu imunologie MeSH
- lidé MeSH
- lipidy chemická syntéza chemie MeSH
- liposomy chemie imunologie farmakologie MeSH
- mannany chemie imunologie farmakologie MeSH
- mikrofluidika metody MeSH
- myši inbrední BALB C MeSH
- nanočástice chemie MeSH
- receptory buněčného povrchu imunologie MeSH
- syntetická chemie okamžité shody MeSH
- velikost částic MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Bioorthogonal chemistry provides one of the possibilities to modify various biomolecules in their native environment. The combination of Click chemistry with the BONCAT method (bioorthogonal non-canonical amino acid tagging) is widely used for tagging and analysis of newly synthesized proteins, which are clearly distinguishable from the pre-existing protein pool. However, the commonly used procedure results in low quality 2D electrophoretic profiles. We put a lot of effort into obtaining clear results using a standard Click protocol, with a negligible effect. Here we describe a Click-on-membrane approach which we successfully used not only to monitor de novo protein synthesis but also to detect newly synthesized RNA.
The development of highly active and selective enzyme inhibitors is one of the priorities of medicinal chemistry. Typically, various high-throughput screening methods are used to find lead compounds from a large pool of synthetic compounds, and these are further elaborated and structurally refined to achieve the desired properties. In an effort to streamline this complex and laborious process, new selection strategies based on different principles have recently emerged as an alternative. Herein, we compare three such selection strategies with the aim of identifying potent and selective inhibitors of human carbonic anhydrase II. All three approaches, in situ click chemistry, phage-display libraries and synthetic peptide libraries, led to the identification of more potent inhibitors when compared to the parent compounds. In addition, one of the inhibitor-peptide conjugates identified from the phage libraries showed greater than 100-fold selectivity for the enzyme isoform used for the compound selection. In an effort to rationalize the binding properties of the conjugates, we performed detailed crystallographic and NMR structural analysis, which revealed the structural basis of the compound affinity towards the enzyme and led to the identification of a novel exosite that could be utilized in the development of isoform specific inhibitors.
- Publikační typ
- časopisecké články MeSH
- Klíčová slova
- bioortogonální chemie,
- MeSH
- alkyny chemie MeSH
- azidy chemie MeSH
- chemické jevy MeSH
- cykloadiční reakce klasifikace metody přístrojové vybavení MeSH
- syntetická chemie okamžité shody * metody MeSH
- výzkum MeSH
- Publikační typ
- přehledy MeSH
The increasing popularity of peptides as promising molecular scaffolds for biomedical applications and as valuable biochemical probes makes new methods allowing for their modification highly desirable. We describe herein an optimized protocol based on a sequence of CuAAC click reactions and selective deprotection steps, which leads to an efficient multi-functionalization of synthetic peptides. The methodology has been successfully applied to the construction of defined heteroglycopeptides and fluorophore-quencher-containing probes for proteases. The developed chemistry thus represents an important addition to the available toolbox of methods enabling efficient postsynthetic modification of peptides. The commercial availability of numerous azide probes further greatly extends the application potential of the described methodology.
The rise of CuI-catalyzed click chemistry has initiated an increased demand for azido and alkyne derivatives of amino acid as precursors for the synthesis of clicked peptides. However, the use of azido and alkyne amino acids in peptide chemistry is complicated by their high cost. For this reason, we investigated the possibility of the in-house preparation of a set of five Fmoc azido amino acids: β-azido l-alanine and d-alanine, γ-azido l-homoalanine, δ-azido l-ornithine and ω-azido l-lysine. We investigated several reaction pathways described in the literature, suggested several improvements and proposed several alternative routes for the synthesis of these compounds in high purity. Here, we demonstrate that multigram quantities of these Fmoc azido amino acids can be prepared within a week or two and at user-friendly costs. We also incorporated these azido amino acids into several model tripeptides, and we observed the formation of a new elimination product of the azido moiety upon conditions of prolonged couplings with 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate/DIPEA. We hope that our detailed synthetic protocols will inspire some peptide chemists to prepare these Fmoc azido acids in their laboratories and will assist them in avoiding the too extensive costs of azidopeptide syntheses. Experimental procedures and/or analytical data for compounds 3-5, 20, 25, 26, 30 and 43-47 are provided in the supporting information. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.
- MeSH
- alkyny chemie MeSH
- aminokyseliny chemická syntéza MeSH
- azidy chemie MeSH
- ethylaminy chemie MeSH
- fluoreny chemická syntéza chemie MeSH
- močovina analogy a deriváty chemie MeSH
- peptidy chemická syntéza MeSH
- syntetická chemie okamžité shody metody MeSH
- triazoly chemie MeSH
- Publikační typ
- časopisecké články MeSH