Polyenic Antibiotics and Other Antifungal Compounds Produced by Hemolytic Streptomyces Species

. 2022 Nov 30 ; 23 (23) : . [epub] 20221130

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36499372

Grantová podpora
17-30091A Czech Health Research Council
No. 17-22572S Czech Science Fund project
Strategy AV21 "Diver-sity of life and health of ecosystems" and "Land conservation and restoration" Research Programme of the Academy of Sciences of the Czech Republic
SVV 260520 Charles University
Cooperatio 207032 Immunity and Infection Charles University
UJEP-SGS-2020-53-002-2 Jan Evangelista Purkyně University in Ústí nad Labem
Erasmus Student Mobility Program, contract ID: 18/1/KA103/047073/SMP Erasmus Traineeship Programme

Streptomyces are of great interest in the pharmaceutical industry as they produce a plethora of secondary metabolites that act as antibacterial and antifungal agents. They may thrive on their own in the soil, or associate with other organisms, such as plants or invertebrates. Some soil-derived strains exhibit hemolytic properties when cultivated on blood agar, raising the question of whether hemolysis could be a virulence factor of the bacteria. In this work we examined hemolytic compound production in 23 β-hemolytic Streptomyces isolates; of these 12 were soil-derived, 10 were arthropod-associated, and 1 was plant-associated. An additional human-associated S. sp. TR1341 served as a control. Mass spectrometry analysis suggested synthesis of polyene molecules responsible for the hemolysis: candicidins, filipins, strevertene A, tetrafungin, and tetrin A, as well as four novel polyene compounds (denoted here as polyene A, B, C, and D) in individual liquid cultures or paired co-cultures. The non-polyene antifungal compounds actiphenol and surugamide A were also identified. The findings indicate that the ability of Streptomyces to produce cytolytic compounds (here manifested by hemolysis on blood agar) is an intrinsic feature of the bacteria in the soil environment and could even serve as a virulence factor when colonizing available host organisms. Additionally, a literature review of polyenes and non-polyene hemolytic metabolites produced by Streptomyces is presented.

Zobrazit více v PubMed

Procopio R.E., Silva I.R., Martins M.K., Azevedo J.L., Araujo J.M. Antibiotics produced by streptomyces. Braz. J. Infect. Dis. 2012;16:466–471. doi: 10.1016/j.bjid.2012.08.014. PubMed DOI

Gross H. Strategies to unravel the function of orphan biosynthesis pathways: Recent examples and future prospects. Appl. Microbiol. Biotechnol. 2007;75:267–277. doi: 10.1007/s00253-007-0900-5. PubMed DOI

Wanner L.A. A new strain of streptomyces causing common scab in potato. Plant. Dis. 2007;91:352–359. doi: 10.1094/PDIS-91-4-0352. PubMed DOI

el Hassan A.M., Fahal A.H., Ahmed A.O., Ismail A., Veress B. The immunopathology of actinomycetoma lesions caused by streptomyces somaliensis. Trans. R. Soc. Trop. Med. Hyg. 2001;95:89–92. doi: 10.1016/S0035-9203(01)90346-3. PubMed DOI

Seipke R.F., Kaltenpoth M., Hutchings M.I. Streptomyces as symbionts: An emerging and widespread theme? FEMS Microbiol. Rev. 2012;36:862–876. doi: 10.1111/j.1574-6976.2011.00313.x. PubMed DOI

Zhang X.H., Austin B. Haemolysins in vibrio species. J. Appl. Microbiol. 2005;98:1011–1019. doi: 10.1111/j.1365-2672.2005.02583.x. PubMed DOI

Vesper S.J., Vesper M.J. Possible role of fungal hemolysins in sick building syndrome. Adv. Appl. Microbiol. 2004;55:191–213. PubMed

Bhakdi S., Tranum-Jensen J. Complement lysis: A hole is a hole. Immunol. Today. 1991;12:318–320; discussion 321. doi: 10.1016/0167-5699(91)90007-G. PubMed DOI

Dixon D.M., Walsh T.J. Antifungal agents. In: Baron S., editor. Medical. Microbiology. University of Texas Medical Branch at Galveston; Galveston, TX, USA: 1996. PubMed

Dinos G.P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 2017;174:2967–2983. doi: 10.1111/bph.13936. PubMed DOI PMC

Kristanc L., Bozic B., Jokhadar S.Z., Dolenc M.S., Gomiscek G. The pore-forming action of polyenes: From model membranes to living organisms. Biochim. Biophys. Acta Biomembr. 2019;1861:418–430. doi: 10.1016/j.bbamem.2018.11.006. PubMed DOI

Guo X., Zhang J., Li X., Xiao E., Lange J.D., Rienstra C.M., Burke M.D., Mitchell D.A. Sterol sponge mechanism is conserved for glycosylated polyene macrolides. ACS Cent. Sci. 2021;7:781–791. doi: 10.1021/acscentsci.1c00148. PubMed DOI PMC

Trejo W.H., Bennett R.E. Streptomyces nodosus sp. N., the amphotericin-producing organism. J. Bacteriol. 1963;85:436–439. doi: 10.1128/jb.85.2.436-439.1963. PubMed DOI PMC

Xiong Z.Q., Tu X.R., Wei S.J., Huang L., Li X.H., Lu H., Tu G.Q. The mechanism of antifungal action of a new polyene macrolide antibiotic antifungalmycin 702 from streptomyces padanus jau4234 on the rice sheath blight pathogen rhizoctonia solani. PLoS ONE. 2013;8:e73884. doi: 10.1371/journal.pone.0073884. PubMed DOI PMC

Shenin I., Solov’ev V.N., Nvinskii A.A. [structure of the polyenic antibiotic, arenomycin b] Antibiotiki. 1973;18:872–876. PubMed

Yang J., Xu D., Yu W., Hao R., Wei J. Regulation of aureofuscin production by the PAS-LuxR family regulator AurJ3M. Enzym. Microb. Technol. 2020;137:109532. doi: 10.1016/j.enzmictec.2020.109532. PubMed DOI

Graessle O.E., Phares H.F., Robinson H.J. In vitro studies with a new antimycotic agent: Lucensomycin. Antibiot Chemother. 1962;12:608–617. PubMed

Kim H.J., Kim M.K., Lee M.J., Won H.J., Choi S.S., Kim E.S. Post-pks tailoring steps of a disaccharide-containing polyene npp in pseudonocardia autotrophica. PLoS ONE. 2015;10:e0123270. doi: 10.1371/journal.pone.0123270. PubMed DOI PMC

Hazen E.L., Brown R. Fungicidin, an antibiotic produced by a soil actinomycete. Proc. Soc. Exp. Biol. Med. 1951;76:93–97. doi: 10.3181/00379727-76-18397. PubMed DOI

Struyk A.P., Hoette I., Drost G., Waisvisz J.M., Van Eek T., Hoogerheide J.C. Pimaricin, a new antifungal antibiotic. Antibiot Annu. 1957;5:878–885. PubMed

Ulrych A., Derrick P.J., Adamek F., Novak P., Lemr K., Havlicek V. Dissociation of nystatin and amphotericin analogues: Characterisation of minor anti-fungal macrolides. Eur. J. Mass. Spectrom. 2010;16:73–80. doi: 10.1255/ejms.1027. PubMed DOI

Hamilton-Miller J.M. Chemistry and biology of the polyene macrolide antibiotics. Bacteriol. Rev. 1973;37:166–196. doi: 10.1128/br.37.2.166-196.1973. PubMed DOI PMC

Davisson J.W., Tanner F.W., Jr., Finlay A.C., Solomons I.A. Rimocidin, a new antibiotic. Antibiot Chemother. 1951;1:289–290. PubMed

Veiga M., Fabregas J. Tetrafungin, a new polyene macrolide antibiotic. I. Fermentation, isolation, characterization, and biological properties. J. Antibiot. 1983;36:770–775. doi: 10.7164/antibiotics.36.770. PubMed DOI

Dornberger K., Fugner R., Bradler G., Thrum H. Tetramycin, a new polyene antibiotic. J. Antibiot. 1971;24:172–177. doi: 10.7164/antibiotics.24.172. PubMed DOI

Pandey R.C., German V.F., Nishikawa Y., Rinehart K.L., Jr. Polyene antibiotics. Ii. The strucutre of tetrin a. J. Am. Chem. Soc. 1971;93:3738–3747. PubMed

Ryu G., Choi W.C., Hwang S., Yeo W.H., Lee C.S., Kim S.K. Tetrin c, a new glycosylated polyene macrolide antibiotic produced by streptomyces sp. Gk9244. J. Nat. Prod. 1999;62:917–919. doi: 10.1021/np9805645. PubMed DOI

English A.R., Mc B.T. Pa 150, pa 153, and pa 166: New polyene antifungal antibiotics: Biological studies. Antibiot Annu. 1957;5:893–896. PubMed

Taig M.M., Solov’eva N.K., Braginskaia P.S. [characteristics of the culture-producer of aurenin] Antibiotiki. 1969;14:873–876. PubMed

Caltrider P., Gottlieb D. Capacidin: A new member of the polyene antibiotic group. Antibiot Chemother. 1961;10:702–708.

Pandey R.C., Narasimhachari N., Rinehart K.L., Jr., Millington D.S. Polyene antibiotics. Iv. Structure of chainin. J. Am. Chem. Soc. 1972;94:4306–4310. doi: 10.1021/ja00767a045. PubMed DOI

Trinci A., Chalkley L.J. Comparison of the effects of the polyenes amphotericin b and elizabethin on candida pseudotropicalis. Trans. Br. Mycol. Soc. 1983;80:491–495. doi: 10.1016/S0007-1536(83)80045-X. DOI

Cirillo V.P., Harsch M., Lampen J.O. Action of the polyene antibiotics filipin, nystatin and n-acetylcandidin on the yeast cell membrane. J. Gen. Microbiol. 1964;35:249–259. doi: 10.1099/00221287-35-2-249. PubMed DOI

Umezawa S., Tanaka Y., Ooka M., Shiotsu S. A new antifungal antibiotic, pentamycin. J. Antibiot. 1958;11:26–29. PubMed

Li Z., Rawlings B.J., Harrison P.H., Vederas J.C. Production of new polyene antibiotics by streptomyces cellulosae after addition of ethyl (z)-16-phenylhexadec-9-enoate. J. Antibiot. 1989;42:577–584. doi: 10.7164/antibiotics.42.577. PubMed DOI

Endo M., Hayashida T., Tsunematsu Y. [application of an antifungal antibiotic (kabicidin) in cultures of cells] Jpn. J. Med. Sci. Biol. 1959;12:173–174. doi: 10.7883/yoken1952.12.173. PubMed DOI

Brazhnikova M.G., Kudinova M.K., Lavrova M.F., Borisova V.N., Krugliak E.B. [isolation, purification and physico-chemical properties of antibiotic lienomycin] Antibiotiki. 1971;16:483–486. PubMed

Bycroft B.W., Payne D.J. Dictionary of Antibiotics and Related Substances: With CD-ROM. 2nd ed. CRC Press; Boca Raton, FL, USA: 2014.

Berdy J., Horváth I. Antibiotics produced by streptomyces vi. Pentafungin, a new antifungal antibiotic. J. Basic Microbiol. 2007;5:345–350.

Yao T., Liu Z., Li T., Zhang H., Liu J., Li H., Che Q., Zhu T., Li D., Li W. Characterization of the biosynthetic gene cluster of the polyene macrolide antibiotic reedsmycins from a marine-derived streptomyces strain. Microb. Cell Fact. 2018;17:98. doi: 10.1186/s12934-018-0943-6. PubMed DOI PMC

Van Arnam E.B., Ruzzini A.C., Sit C.S., Horn H., Pinto-Tomas A.A., Currie C.R., Clardy J. Selvamicin, an atypical antifungal polyene from two alternative genomic contexts. Proc. Natl. Acad. Sci. USA. 2016;113:12940–12945. doi: 10.1073/pnas.1613285113. PubMed DOI PMC

Guo J., Schlingmann G., Carter G.T., Nakanishi K., Berova N. Absolute stereochemistry of the strevertenes. Chirality. 2000;12:43–51. doi: 10.1002/(SICI)1520-636X(2000)12:1<43::AID-CHIR8>3.0.CO;2-N. PubMed DOI

Kim Y.P., Tomoda H., Iizima K., Fukuda T., Matsumoto A., Takahashi Y., Omura S. Takanawaenes, novel antifungal antibiotics produced by streptomyces sp. K99-5278. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiot. 2003;56:448–453. doi: 10.7164/antibiotics.56.448. PubMed DOI

Greule A., Intra B., Flemming S., Rommel M.G., Panbangred W., Bechthold A. The draft genome sequence of actinokineospora bangkokensis 44ehw(t) reveals the biosynthetic pathway of the antifungal thailandin compounds with unusual butylmalonyl-coa extender units. Molecules. 2016;21:1607. doi: 10.3390/molecules21111607. PubMed DOI PMC

Martin J.F., McDaniel L.E. Isolation, purification and properties of the hexaene macrolides candihexin i and candihexin ii. J. Antibiot. 1974;27:610–619. doi: 10.7164/antibiotics.27.610. PubMed DOI

Sakamoto J.M. [study on antifungal antibiotics. Ii. Cryptocidin, a new antibiotic produced by streptomycetes] J. Antibiot. 1959;12:21–23. PubMed

Barashkova N.P., Shenin Iu D., Omel’chenko V.N., Konev Iu E. [actinomyces chromogenes var. Graecus var. Nov., a producer of a new hexaene antibiotic] Antibiotiki. 1977;22:832–837. PubMed

Chakrabarti S., Chandra A.L. A new streptomycete and a new polyene antibiotic, acmycin. Folia Microbiol. (Praha) 1982;27:167–172. doi: 10.1007/BF02877395. PubMed DOI

Dutcher J.D. The discovery and development of amphotericin b. Dis. Chest. 1968;54((Suppl. S1)):296–298. doi: 10.1378/chest.54.Supplement_1.296. PubMed DOI

Kotler-Brajtburg J., Medoff G., Kobayashi G.S., Boggs S., Schlessinger D., Pandey R.C., Rinehart K.L., Jr. Classification of polyene antibiotics according to chemical structure and biological effects. Antimicrob. Agents Chemother. 1979;15:716–722. doi: 10.1128/AAC.15.5.716. PubMed DOI PMC

Kligman A.M., Lewis F.S. In vitro and in vivo activity of candicidin on pathogenic fungi. Proc. Soc. Exp. Biol. Med. 1953;82:399–404. doi: 10.3181/00379727-82-20128. PubMed DOI

Taber W.A., Vining L.C., Waksman S.A. Candidin, a new antifungal antibiotic produced by streptomyces viridoflavus. Antibiot Chemother. 1954;4:455–461. PubMed

Kruglikova L.F., Shenin Iu D. [characteristics of a new aromatic heptaenic antibiotic, flavumycin a] Antibiotiki. 1976;21:407–411. PubMed

Mohan R.R., Pianotti R.S., Martin J.F., Ringel S.M., Schwartz B.S., Bailey E.G., McDaniel L.E., Schaffner C.P. Fungimycin production, isolation, biosynthesis, and in vitro antifungal activity. Antimicrob. Agents Chemother. 1963;161:462–470. PubMed

Gokhale B.B. Hamycin--A new antifungal antibiotic. Arch. Dermatol. 1963;88:558–560. doi: 10.1001/archderm.1963.01590230066010. PubMed DOI

Filippova A.I., Solov’ev S.N., Vasil’eva N.G., Dumova A.M., Egorenkova A.N. [isomerization of polyene antibiotics with characteristics of isolevorin a2] Antibiotiki. 1972;17:932–937. PubMed

Filippova A.I., Lashkov G.I., Kozel S.P., Shenin Iu D. [spectrophotometric research on the photochemical isomerization of the polyene macrolide antibiotic levorin a2] Antibiot Med. Biotekhnol. 1987;32:749–754. PubMed

Borowski E., Malyshkina M., Soloviev S., Ziminski T. Isolation and characterization of levorin a and b, the heptaene macrolide antifungal antibiotics of “aromatic” subgroup. Chemotherapy. 1965;10:176–194. doi: 10.1159/000220406. PubMed DOI

Martinez-Quesada J., Torres-Rodriguez J.M., Roses-Codinachs M., Amaral-Olivera M. Minimal inhibitory concentrations of lucknomycin, a new polyenic derivative, for candida and aspergillus spp. Antimicrob. Agents Chemother. 1983;24:132–133. doi: 10.1128/AAC.24.1.132. PubMed DOI PMC

Luna T., Mazzolla R., Romano G., Blasi E. Potent antifungal effects of a new derivative of partricin a in a murine model of cerebral cryptococcosis. Antimicrob. Agents Chemother. 1997;41:706–708. doi: 10.1128/AAC.41.3.706. PubMed DOI PMC

Pawlak J., Sowinski P., Borowski E., Gariboldi P. Stereostructure of perimycin a. J. Antibiot. 1995;48:1034–1038. doi: 10.7164/antibiotics.48.1034. PubMed DOI

Mendizabal A.F., Inza R., Salaber J.A. [trichomycin: A new antibiotic for the treatment of colpitis caused by trichomonas & candida albicans] Rev. Asoc. Med. Argent. 1957;71:48–50. PubMed

Bortolo R., Spera S., Gugliemetti G., Cassani G. Ab023, novel polyene antibiotics. Ii. Isolation and structure determination. J. Antibiot. 1993;46:255–264. doi: 10.7164/antibiotics.46.255. PubMed DOI

Cai P., Kong F., Fink P., Ruppen M.E., Williamson R.T., Keiko T. Polyene antibiotics from streptomyces mediocidicus. J. Nat. Prod. 2007;70:215–219. doi: 10.1021/np060542f. PubMed DOI

McAlpine J.B., Bachmann B.O., Piraee M., Tremblay S., Alarco A.M., Zazopoulos E., Farnet C.M. Microbial genomics as a guide to drug discovery and structural elucidation: Eco-02301, a novel antifungal agent, as an example. J. Nat. Prod. 2005;68:493–496. doi: 10.1021/np0401664. PubMed DOI

Irschik H., Schummer D., Hofle G., Reichenbach H., Steinmetz H., Jansen R. Etnangien, a macrolide-polyene antibiotic from sorangium cellulosum that inhibits nucleic acid polymerases. J. Nat. Prod. 2007;70:1060–1063. doi: 10.1021/np070115h. PubMed DOI

Park H.S., Nah H.J., Kang S.H., Choi S.S., Kim E.S. Screening and isolation of a novel polyene-producing streptomyces strain inhibiting phytopathogenic fungi in the soil environment. Front. Bioeng. Biotechnol. 2021;9:692340. doi: 10.3389/fbioe.2021.692340. PubMed DOI PMC

Almeida E.L., Kaur N., Jennings L.K., Carrillo Rincon A.F., Jackson S.A., Thomas O.P., Dobson A.D.W. Genome mining coupled with osmac-based cultivation reveal differential production of surugamide a by the marine sponge isolate streptomyces sp. Sm17 when compared to its terrestrial relative s. Albidoflavus j1074. Microorganisms. 2019;7:394. doi: 10.3390/microorganisms7100394. PubMed DOI PMC

Chater K.F., Biro S., Lee K.J., Palmer T., Schrempf H. The complex extracellular biology of streptomyces. FEMS Microbiol. Rev. 2010;34:171–198. doi: 10.1111/j.1574-6976.2009.00206.x. PubMed DOI

Matsuda K., Kuranaga T., Sano A., Ninomiya A., Takada K., Wakimoto T. The revised structure of the cyclic octapeptide surugamide a. Chem. Pharm. Bull. 2019;67:476–480. doi: 10.1248/cpb.c19-00002. PubMed DOI

Umezawa K., Nakazawa K., Ikeda Y., Naganawa H., Kondo S. Polyoxypeptins a and b produced by streptomyces: Apoptosis-inducing cyclic depsipeptides containing the novel amino acid (2s,3r)-3-hydroxy-3-methylproline. J. Org. Chem. 1999;64:3034–3038. doi: 10.1021/jo981512n. PubMed DOI

Umezawa H. Bleomycin and other antitumor antibiotics of high molecular weight. Antimicrob. Agents Chemother. (Bethesda) 1965;5:1079–1085. PubMed

Johnson A.W. The chemistry of actinomycin d and related compounds. Ann. N. Y. Acad. Sci. 1960;89:336–341. doi: 10.1111/j.1749-6632.1960.tb20156.x. PubMed DOI

Giessen T.W., Franke K.B., Knappe T.A., Kraas F.I., Bosello M., Xie X., Linne U., Marahiel M.A. Isolation, structure elucidation, and biosynthesis of an unusual hydroxamic acid ester-containing siderophore from actinosynnema mirum. J. Nat. Prod. 2012;75:905–914. doi: 10.1021/np300046k. PubMed DOI

Kido G.S., Spyhalski E. Antimycin a, an antibiotic with insecticidal and miticidal properties. Science. 1950;112:172–173. doi: 10.1126/science.112.2902.172. PubMed DOI

Hatanaka H., Iwami M., Kino T., Goto T., Okuhara M. Fr-900520 and fr-900523, novel immunosuppressants isolated from a streptomyces. I. Taxonomy of the producing strain. J. Antibiot. (Tokyo) 1988;41:1586–1591. doi: 10.7164/antibiotics.41.1586. PubMed DOI

Andexer J.N., Kendrew S.G., Nur-e-Alam M., Lazos O., Foster T.A., Zimmermann A.S., Warneck T.D., Suthar D., Coates N.J., Koehn F.E., et al. Biosynthesis of the immunosuppressants fk506, fk520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc. Natl. Acad. Sci. USA. 2011;108:4776–4781. doi: 10.1073/pnas.1015773108. PubMed DOI PMC

He M., Haltli B., Summers M., Feng X., Hucul J. Isolation and characterization of meridamycin biosynthetic gene cluster from streptomyces sp. Nrrl 30748. Gene. 2006;377:109–118. doi: 10.1016/j.gene.2006.03.021. PubMed DOI

Doscher M.E., Wood I.B., Pankavich J.A., Ricks C.A. Efficacy of nemadectin, a new broad-spectrum endectocide, against natural infections of canine gastrointestinal helminths. Vet. Parasitol. 1989;34:255–259. doi: 10.1016/0304-4017(89)90055-1. PubMed DOI

Seto B. Rapamycin and mtor: A serendipitous discovery and implications for breast cancer. Clin. Transl. Med. 2012;1:29. doi: 10.1186/2001-1326-1-29. PubMed DOI PMC

Rhodes A., Fantes K.H., Boothroyd B., McGonagle M.P., Crosse R. Venturicidin: A new antifungal antibiotic of potential use in agriculture. Nature. 1961;192:952–954. doi: 10.1038/192952a0. PubMed DOI

Spizek J., Malek I., Suchy J., Vondracek M., Vanek Z. Metabolites of streptomyces noursei. V. Relation of the production of cycloheximide and actiphenol to the production of fungicidin. Folia Microbiol. 1965;10:263–266. PubMed

Seaton P.J., Gould S.J. New products related to kinamycin from streptomyces murayamaensis. Ii. Structures of pre-kinamycin, keto-anhydrokinamycin, and kinamycins e and f. J. Antibiot. 1989;42:189–197. doi: 10.7164/antibiotics.42.189. PubMed DOI

Zhang J., Li S., Wu X., Guo Z., Lu C., Shen Y. Nam7 hydroxylase is responsible for the formation of the naphthalenic ring in the biosynthesis of neoansamycins. Org. Lett. 2017;19:2442–2445. doi: 10.1021/acs.orglett.7b01083. PubMed DOI

Bhuyan B.K., Smith C.G. Differential interaction of nogalamycin with DNA of varying base composition. Proc. Natl. Acad. Sci. USA. 1965;54:566–572. doi: 10.1073/pnas.54.2.566. PubMed DOI PMC

Koshino H., Takahashi H., Osada H., Isono K. Reveromycins, new inhibitors of eukaryotic cell growth. Iii. Structures of reveromycins a, b, c and d. J. Antibiot. 1992;45:1420–1427. doi: 10.7164/antibiotics.45.1420. PubMed DOI

Liu W., Nonaka K., Nie L., Zhang J., Christenson S.D., Bae J., Van Lanen S.G., Zazopoulos E., Farnet C.M., Yang C.F., et al. The neocarzinostatin biosynthetic gene cluster from streptomyces carzinostaticus atcc 15944 involving two iterative type i polyketide synthases. Chem. Biol. 2005;12:293–302. doi: 10.1016/j.chembiol.2004.12.013. PubMed DOI

BeBoer C., Dietz A. The description and antibiotic production of streptomyces hygroscopicus var. Geldanus. J. Antibiot. 1976;29:1182–1188. PubMed

Herbrik A., Corretto E., Chronakova A., Langhansova H., Petraskova P., Hrdy J., Cihak M., Kristufek V., Bobek J., Petricek M., et al. A human lung-associated streptomyces sp. Tr1341 produces various secondary metabolites responsible for virulence, cytotoxicity and modulation of immune response. Front. Microbiol. 2019;10:3028. doi: 10.3389/fmicb.2019.03028. PubMed DOI PMC

Knopik-Skrocka A., Bielawski J. The mechanism of the hemolytic activity of polyene antibiotics. Cell Mol. Biol. Lett. 2002;7:31–48. PubMed

te Welscher Y.M., Jones L., van Leeuwen M.R., Dijksterhuis J., de Kruijff B., Eitzen G., Breukink E. Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrob. Agents Chemother. 2010;54:2618–2625. doi: 10.1128/AAC.01794-09. PubMed DOI PMC

Gray K.C., Palacios D.S., Dailey I., Endo M.M., Uno B.E., Wilcock B.C., Burke M.D. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA. 2012;109:2234–2239. doi: 10.1073/pnas.1117280109. PubMed DOI PMC

Elliott S.J., Srinivas S., Albert M.J., Alam K., Robins-Browne R.M., Gunzburg S.T., Mee B.J., Chang B.J. Characterization of the roles of hemolysin and other toxins in enteropathy caused by alpha-hemolytic escherichia coli linked to human diarrhea. Infect Immun. 1998;66:2040–2051. doi: 10.1128/IAI.66.5.2040-2051.1998. PubMed DOI PMC

Scherr N., Nguyen L. Mycobacterium versus streptomyces--We are different, we are the same. Curr. Opin. Microbiol. 2009;12:699–707. doi: 10.1016/j.mib.2009.10.003. PubMed DOI

Wurzer T. Bachelor’s Thesis. University of South Bohemia in České Budějovice; České Budějovice, Czech Republic: 2019. The Interaction of Streptomyces-like Bacteria and Model Microorganisms in Secondary Metabolite Production, Motility and Hemolytic Activities—Experimental.

Labeda D.P., Goodfellow M., Brown R., Ward A.C., Lanoot B., Vanncanneyt M., Swings J., Kim S.B., Liu Z., Chun J., et al. Phylogenetic study of the species within the family streptomycetaceae. Antonie Van Leeuwenhoek. 2012;101:73–104. doi: 10.1007/s10482-011-9656-0. PubMed DOI

Rajesh T., Jeon J.M., Kim Y.H., Kim H.J., Yi da H., Park S.H., Choi K.Y., Kim Y.G., Kim J., Jung S., et al. Functional analysis of the gene sco1782 encoding streptomyces hemolysin (s-hemolysin) in streptomyces coelicolor m145. Toxicon. 2013;71:159–165. doi: 10.1016/j.toxicon.2013.05.023. PubMed DOI

Harir M., Bendif H., Bellahcene M., Pogni Z.F.R. Streptomyces secondary metabolites. In: Enany S., editor. Basic Biology and Applications of Actinobacteria. IntechOpen; London, UK: 2018.

Bernal M.G., Campa-Cordova A.I., Saucedo P.E., Gonzalez M.C., Marrero R.M., Mazon-Suastegui J.M. Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture. Vet. World. 2015;8:170–176. doi: 10.14202/vetworld.2015.170-176. PubMed DOI PMC

Sheng Y., Ou Y., Hu X., Deng Z., Bai L., Kang Q. Generation of tetramycin b derivative with improved pharmacological property based on pathway engineering. Appl. Microbiol. Biotechnol. 2020;104:2561–2573. doi: 10.1007/s00253-020-10391-8. PubMed DOI

Cinar B., Demir Z., Tunca S. Heterologous expression of 8-demethyl-tetracenomycin (8-dmtc) affected streptomyces coelicolor life cycle. Braz. J. Microbiol. 2021;52:1107–1118. doi: 10.1007/s42770-021-00499-y. PubMed DOI PMC

Tenconi E., Traxler M.F., Hoebreck C., van Wezel G.P., Rigali S. Production of prodiginines is part of a programmed cell death process in streptomyces coelicolor. Front. Microbiol. 2018;9:1742. doi: 10.3389/fmicb.2018.01742. PubMed DOI PMC

Haro-Reyes T., Diaz-Peralta L., Galvan-Hernandez A., Rodriguez-Lopez A., Rodriguez-Fragoso L., Ortega-Blake I. Polyene antibiotics physical chemistry and their effect on lipid membranes; impacting biological processes and medical applications. Membranes. 2022;12:681. doi: 10.3390/membranes12070681. PubMed DOI PMC

Grubbs K.J., Surup F., Biedermann P.H.W., McDonald B.R., Klassen J.L., Carlson C.M., Clardy J., Currie C.R. Cycloheximide-producing streptomyces associated with xyleborinus saxesenii and xyleborus affinis fungus-farming ambrosia beetles. Front. Microbiol. 2020;11:562140. doi: 10.3389/fmicb.2020.562140. PubMed DOI PMC

Skelton J., Jusino M.A., Li Y., Bateman C., Thai P.H., Wu C., Lindner D.L., Hulcr J. Detecting symbioses in complex communities: The fungal symbionts of bark and ambrosia beetles within asian pines. Microb. Ecol. 2018;76:839–850. doi: 10.1007/s00248-018-1154-8. PubMed DOI

Goettler W., Kaltenpoth M., McDonald S., Strohm E. Comparative morphology of the symbiont cultivation glands in the antennae of female digger wasps of the genus philanthus (hymenoptera: Crabronidae) Front. Physiol. 2022;13:815494. doi: 10.3389/fphys.2022.815494. PubMed DOI PMC

Dhodary B., Spiteller D. Ammonia production by streptomyces symbionts of acromyrmex leaf-cutting ants strongly inhibits the fungal pathogen escovopsis. Microorganisms. 2021;9:1622. doi: 10.3390/microorganisms9081622. PubMed DOI PMC

Vergnes S., Gayrard D., Veyssière M., Toulotte J., Martinez Y., Dumont V., Bouchez O., Rey T., Dumas B. Phyllosphere colonization by a soil streptomyces sp. Promotes plant defense responses against fungal infection. Mol. Plant-Microbe Interact. MPMI. 2020;33:223–234. doi: 10.1094/MPMI-05-19-0142-R. PubMed DOI

Kim D.R., Cho G., Jeon C.W., Weller D.M., Thomashow L.S., Paulitz T.C., Kwak Y.S. A mutualistic interaction between streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 2019;10:4802. doi: 10.1038/s41467-019-12785-3. PubMed DOI PMC

Dohet L., Grégoire J.C., Berasategui A., Kaltenpoth M., Biedermann P.H. Bacterial and fungal symbionts of parasitic dendroctonus bark beetles. FEMS Microbiol. Ecol. 2016;92 doi: 10.1093/femsec/fiw129. PubMed DOI

Schlosser E., Gottlieb D. Mode of hemolytic action of the antifungal polyene antibiotic filipin. Z. Naturforsch. B. 1966;21:74–77. doi: 10.1515/znb-1966-0120. PubMed DOI

Kim J.D., Han J.W., Lee S.C., Lee D., Hwang I.C., Kim B.S. Disease control effect of strevertenes produced by streptomyces psammoticus against tomato fusarium wilt. J. Agric. Food Chem. 2011;59:1893–1899. doi: 10.1021/jf1038585. PubMed DOI

Shenin Y.D., Belakhov V.V., Araviiskii R.A. Nystatin: Methods of preparation, search for derivatives, and prospects for medicinal use (review) Pharm. Chem. J. 1993;27:84–92. doi: 10.1007/BF00781067. DOI

Brautaset T., Bruheim P., Sletta H., Hagen L., Ellingsen T.E., Strom A.R., Valla S., Zotchev S.B. Hexaene derivatives of nystatin produced as a result of an induced rearrangement within the nysc polyketide synthase gene in s. Noursei atcc 11455. Chem. Biol. 2002;9:367–373. doi: 10.1016/S1074-5521(02)00108-4. PubMed DOI

Asturias J.A., Liras P., Martin J.F. Phosphate control of pabs gene transcription during candicidin biosynthesis. Gene. 1990;93:79–84. doi: 10.1016/0378-1119(90)90139-I. PubMed DOI

Szczeblewski P., Laskowski T., Kubacki B., Dziergowska M., Liczmanska M., Grynda J., Kubica P., Kot-Wasik A., Borowski E. Analytical studies on ascosin, candicidin and levorin multicomponent antifungal antibiotic complexes. The stereostructure of ascosin a2. Sci. Rep. 2017;7:40158. doi: 10.1038/srep40158. PubMed DOI PMC

Brajtburg J., Medoff G., Kobayashi G.S., Elberg S., Finegold C. Permeabilizing and hemolytic action of large and small polyene antibiotics on human erythrocytes. Antimicrob. Agents Chemother. 1980;18:586–592. doi: 10.1128/AAC.18.4.586. PubMed DOI PMC

Hammond S.M., Kliger B.N. Mode of action of the polyene antibiotic candicidin: Binding factors in the wall of candida albicans. Antimicrob. Agents Chemother. 1976;9:561–568. doi: 10.1128/AAC.9.4.561. PubMed DOI PMC

Mikulik K., Bobek J., Zidkova J., Felsberg J. 6s rna modulates growth and antibiotic production in streptomyces coelicolor. Appl. Microbiol. Biotechnol. 2014;98:7185–7197. doi: 10.1007/s00253-014-5806-4. PubMed DOI

Bobek J., Strakova E., Zikova A., Vohradsky J. Changes in activity of metabolic and regulatory pathways during germination of s. Coelicolor. BMC Genom. 2014;15:1173. doi: 10.1186/1471-2164-15-1173. PubMed DOI PMC

Mikulik K., Suchan P., Bobek J. Changes in ribosome function induced by protein kinase associated with ribosomes of streptomyces collinus producing kirromycin. Biochem. Biophys. Res. Commun. 2001;289:434–443. doi: 10.1006/bbrc.2001.6017. PubMed DOI

Horinouchi S. A microbial hormone, a-factor, as a master switch for morphological differentiation and secondary metabolism in streptomyces griseus. Front. Biosci. 2002;7:d2045–d2057. PubMed

Takano E. Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 2006;9:287–294. doi: 10.1016/j.mib.2006.04.003. PubMed DOI

Yamanaka K., Oikawa H., Ogawa H.O., Hosono K., Shinmachi F., Takano H., Sakuda S., Beppu T., Ueda K. Desferrioxamine e produced by streptomyces griseus stimulates growth and development of streptomyces tanashiensis. Microbiology (Reading) 2005;151:2899–2905. doi: 10.1099/mic.0.28139-0. PubMed DOI

Lee H.J., Whang K.S. Streptomyces rhizosphaerihabitans sp. Nov. And streptomyces adustus sp. Nov., isolated from bamboo forest soil. Int. J. Syst. Evol. Microbiol. 2016;66:3573–3578. doi: 10.1099/ijsem.0.001236. PubMed DOI

Human Z.R., Moon K., Bae M., de Beer Z.W., Cha S., Wingfield M.J., Slippers B., Oh D.C., Venter S.N. Antifungal streptomyces spp. Associated with the infructescences of protea spp. In south africa. Front. Microbiol. 2016;7:1657. doi: 10.3389/fmicb.2016.01657. PubMed DOI PMC

Shirling E.B., Gottlieb D. Methods for characterization of streptomyces species1. Int. J. Syst. Evol. Microbiol. 1966;16:313–340.

Chun J., Oren A., Ventosa A., Christensen H., Arahal D.R., da Costa M.S., Rooney A.P., Yi H., Xu X.-W., De Meyer S., et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018;68:461–466. doi: 10.1099/ijsem.0.002516. PubMed DOI

Kotrbová L., Lara A.C., Corretto E., Scharfen J., Ulmann V., Petříčková K., Chroňáková A. Evaluation and comparison of antibiotic susceptibility profiles of streptomyces spp. From clinical specimens revealed common and region-dependent resistance patterns. Sci. Rep. 2022;12:1–12. doi: 10.1038/s41598-022-13094-4. PubMed DOI PMC

Chun J., Lee J.H., Jung Y., Kim M., Kim S., Kim B.K., Lim Y.W. Eztaxon: A web-based tool for the identification of prokaryotes based on 16s ribosomal rna gene sequences. Int. J. Syst. Evol. Microbiol. 2007;57:2259–2261. doi: 10.1099/ijs.0.64915-0. PubMed DOI

Schoch C.L., Ciufo S., Domrachev M., Hotton C.L., Kannan S., Khovanskaya R., Leipe D., McVeigh R., O’Neill K., Robbertse B., et al. Ncbi taxonomy: A comprehensive update on curation, resources and tools. Database. 2020;2020:baaa062. doi: 10.1093/database/baaa062. PubMed DOI PMC

Edgar R.C. Muscle: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004;5:113. doi: 10.1186/1471-2105-5-113. PubMed DOI PMC

Stamatakis A. Raxml version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Letunic I., Bork P. Interactive tree of life (itol) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC

Ochi K. Metabolic initiation of differentiation and secondary metabolism by streptomyces griseus: Significance of the stringent response (ppgpp) and gtp content in relation to a factor. J. Bacteriol. 1987;169:3608–3616. doi: 10.1128/jb.169.8.3608-3616.1987. PubMed DOI PMC

Kamenik Z., Hadacek F., Mareckova M., Ulanova D., Kopecky J., Chobot V., Plhackova K., Olsovska J. Ultra-high-performance liquid chromatography fingerprinting method for chemical screening of metabolites in cultivation broth. J. Chromatogr. A. 2010;1217:8016–8025. doi: 10.1016/j.chroma.2010.08.031. PubMed DOI

Cihak M., Kamenik Z., Smidova K., Bergman N., Benada O., Kofronova O., Petrickova K., Bobek J. Secondary metabolites produced during the germination of streptomyces coelicolor. Front. Microbiol. 2017;8:2495. doi: 10.3389/fmicb.2017.02495. PubMed DOI PMC

Guan S., Ji C., Zhou T., Li J., Ma Q., Niu T. Aflatoxin b(1) degradation by stenotrophomonas maltophilia and other microbes selected using coumarin medium. Int. J. Mol. Sci. 2008;9:1489–1503. doi: 10.3390/ijms9081489. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...