Polyenic Antibiotics and Other Antifungal Compounds Produced by Hemolytic Streptomyces Species
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu přehledy, časopisecké články
Grantová podpora
17-30091A
Czech Health Research Council
No. 17-22572S
Czech Science Fund project
Strategy AV21 "Diver-sity of life and health of ecosystems" and "Land conservation and restoration"
Research Programme of the Academy of Sciences of the Czech Republic
SVV 260520
Charles University
Cooperatio 207032 Immunity and Infection
Charles University
UJEP-SGS-2020-53-002-2
Jan Evangelista Purkyně University in Ústí nad Labem
Erasmus Student Mobility Program, contract ID: 18/1/KA103/047073/SMP
Erasmus Traineeship Programme
PubMed
36499372
PubMed Central
PMC9740855
DOI
10.3390/ijms232315045
PII: ijms232315045
Knihovny.cz E-zdroje
- Klíčová slova
- Actinomycetales, Streptomyces, hemolysis, polyene antibiotics, secondary metabolites, soil ecosystem, symbiosis,
- MeSH
- antibakteriální látky farmakologie metabolismus MeSH
- antifungální látky farmakologie chemie MeSH
- faktory virulence metabolismus MeSH
- hemolýza MeSH
- lidé MeSH
- polyeny farmakologie chemie MeSH
- Streptomyces * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
- antifungální látky MeSH
- faktory virulence MeSH
- polyeny MeSH
Streptomyces are of great interest in the pharmaceutical industry as they produce a plethora of secondary metabolites that act as antibacterial and antifungal agents. They may thrive on their own in the soil, or associate with other organisms, such as plants or invertebrates. Some soil-derived strains exhibit hemolytic properties when cultivated on blood agar, raising the question of whether hemolysis could be a virulence factor of the bacteria. In this work we examined hemolytic compound production in 23 β-hemolytic Streptomyces isolates; of these 12 were soil-derived, 10 were arthropod-associated, and 1 was plant-associated. An additional human-associated S. sp. TR1341 served as a control. Mass spectrometry analysis suggested synthesis of polyene molecules responsible for the hemolysis: candicidins, filipins, strevertene A, tetrafungin, and tetrin A, as well as four novel polyene compounds (denoted here as polyene A, B, C, and D) in individual liquid cultures or paired co-cultures. The non-polyene antifungal compounds actiphenol and surugamide A were also identified. The findings indicate that the ability of Streptomyces to produce cytolytic compounds (here manifested by hemolysis on blood agar) is an intrinsic feature of the bacteria in the soil environment and could even serve as a virulence factor when colonizing available host organisms. Additionally, a literature review of polyenes and non-polyene hemolytic metabolites produced by Streptomyces is presented.
Contipro a s Dolní Dobrouč 401 561 02 Dolní Dobrouč Czech Republic
Doctoral School of Environmental Sciences ELTE Eötvös Loránd University 1117 Budapest Hungary
Zobrazit více v PubMed
Procopio R.E., Silva I.R., Martins M.K., Azevedo J.L., Araujo J.M. Antibiotics produced by streptomyces. Braz. J. Infect. Dis. 2012;16:466–471. doi: 10.1016/j.bjid.2012.08.014. PubMed DOI
Gross H. Strategies to unravel the function of orphan biosynthesis pathways: Recent examples and future prospects. Appl. Microbiol. Biotechnol. 2007;75:267–277. doi: 10.1007/s00253-007-0900-5. PubMed DOI
Wanner L.A. A new strain of streptomyces causing common scab in potato. Plant. Dis. 2007;91:352–359. doi: 10.1094/PDIS-91-4-0352. PubMed DOI
el Hassan A.M., Fahal A.H., Ahmed A.O., Ismail A., Veress B. The immunopathology of actinomycetoma lesions caused by streptomyces somaliensis. Trans. R. Soc. Trop. Med. Hyg. 2001;95:89–92. doi: 10.1016/S0035-9203(01)90346-3. PubMed DOI
Seipke R.F., Kaltenpoth M., Hutchings M.I. Streptomyces as symbionts: An emerging and widespread theme? FEMS Microbiol. Rev. 2012;36:862–876. doi: 10.1111/j.1574-6976.2011.00313.x. PubMed DOI
Zhang X.H., Austin B. Haemolysins in vibrio species. J. Appl. Microbiol. 2005;98:1011–1019. doi: 10.1111/j.1365-2672.2005.02583.x. PubMed DOI
Vesper S.J., Vesper M.J. Possible role of fungal hemolysins in sick building syndrome. Adv. Appl. Microbiol. 2004;55:191–213. PubMed
Bhakdi S., Tranum-Jensen J. Complement lysis: A hole is a hole. Immunol. Today. 1991;12:318–320; discussion 321. doi: 10.1016/0167-5699(91)90007-G. PubMed DOI
Dixon D.M., Walsh T.J. Antifungal agents. In: Baron S., editor. Medical. Microbiology. University of Texas Medical Branch at Galveston; Galveston, TX, USA: 1996. PubMed
Dinos G.P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 2017;174:2967–2983. doi: 10.1111/bph.13936. PubMed DOI PMC
Kristanc L., Bozic B., Jokhadar S.Z., Dolenc M.S., Gomiscek G. The pore-forming action of polyenes: From model membranes to living organisms. Biochim. Biophys. Acta Biomembr. 2019;1861:418–430. doi: 10.1016/j.bbamem.2018.11.006. PubMed DOI
Guo X., Zhang J., Li X., Xiao E., Lange J.D., Rienstra C.M., Burke M.D., Mitchell D.A. Sterol sponge mechanism is conserved for glycosylated polyene macrolides. ACS Cent. Sci. 2021;7:781–791. doi: 10.1021/acscentsci.1c00148. PubMed DOI PMC
Trejo W.H., Bennett R.E. Streptomyces nodosus sp. N., the amphotericin-producing organism. J. Bacteriol. 1963;85:436–439. doi: 10.1128/jb.85.2.436-439.1963. PubMed DOI PMC
Xiong Z.Q., Tu X.R., Wei S.J., Huang L., Li X.H., Lu H., Tu G.Q. The mechanism of antifungal action of a new polyene macrolide antibiotic antifungalmycin 702 from streptomyces padanus jau4234 on the rice sheath blight pathogen rhizoctonia solani. PLoS ONE. 2013;8:e73884. doi: 10.1371/journal.pone.0073884. PubMed DOI PMC
Shenin I., Solov’ev V.N., Nvinskii A.A. [structure of the polyenic antibiotic, arenomycin b] Antibiotiki. 1973;18:872–876. PubMed
Yang J., Xu D., Yu W., Hao R., Wei J. Regulation of aureofuscin production by the PAS-LuxR family regulator AurJ3M. Enzym. Microb. Technol. 2020;137:109532. doi: 10.1016/j.enzmictec.2020.109532. PubMed DOI
Graessle O.E., Phares H.F., Robinson H.J. In vitro studies with a new antimycotic agent: Lucensomycin. Antibiot Chemother. 1962;12:608–617. PubMed
Kim H.J., Kim M.K., Lee M.J., Won H.J., Choi S.S., Kim E.S. Post-pks tailoring steps of a disaccharide-containing polyene npp in pseudonocardia autotrophica. PLoS ONE. 2015;10:e0123270. doi: 10.1371/journal.pone.0123270. PubMed DOI PMC
Hazen E.L., Brown R. Fungicidin, an antibiotic produced by a soil actinomycete. Proc. Soc. Exp. Biol. Med. 1951;76:93–97. doi: 10.3181/00379727-76-18397. PubMed DOI
Struyk A.P., Hoette I., Drost G., Waisvisz J.M., Van Eek T., Hoogerheide J.C. Pimaricin, a new antifungal antibiotic. Antibiot Annu. 1957;5:878–885. PubMed
Ulrych A., Derrick P.J., Adamek F., Novak P., Lemr K., Havlicek V. Dissociation of nystatin and amphotericin analogues: Characterisation of minor anti-fungal macrolides. Eur. J. Mass. Spectrom. 2010;16:73–80. doi: 10.1255/ejms.1027. PubMed DOI
Hamilton-Miller J.M. Chemistry and biology of the polyene macrolide antibiotics. Bacteriol. Rev. 1973;37:166–196. doi: 10.1128/br.37.2.166-196.1973. PubMed DOI PMC
Davisson J.W., Tanner F.W., Jr., Finlay A.C., Solomons I.A. Rimocidin, a new antibiotic. Antibiot Chemother. 1951;1:289–290. PubMed
Veiga M., Fabregas J. Tetrafungin, a new polyene macrolide antibiotic. I. Fermentation, isolation, characterization, and biological properties. J. Antibiot. 1983;36:770–775. doi: 10.7164/antibiotics.36.770. PubMed DOI
Dornberger K., Fugner R., Bradler G., Thrum H. Tetramycin, a new polyene antibiotic. J. Antibiot. 1971;24:172–177. doi: 10.7164/antibiotics.24.172. PubMed DOI
Pandey R.C., German V.F., Nishikawa Y., Rinehart K.L., Jr. Polyene antibiotics. Ii. The strucutre of tetrin a. J. Am. Chem. Soc. 1971;93:3738–3747. PubMed
Ryu G., Choi W.C., Hwang S., Yeo W.H., Lee C.S., Kim S.K. Tetrin c, a new glycosylated polyene macrolide antibiotic produced by streptomyces sp. Gk9244. J. Nat. Prod. 1999;62:917–919. doi: 10.1021/np9805645. PubMed DOI
English A.R., Mc B.T. Pa 150, pa 153, and pa 166: New polyene antifungal antibiotics: Biological studies. Antibiot Annu. 1957;5:893–896. PubMed
Taig M.M., Solov’eva N.K., Braginskaia P.S. [characteristics of the culture-producer of aurenin] Antibiotiki. 1969;14:873–876. PubMed
Caltrider P., Gottlieb D. Capacidin: A new member of the polyene antibiotic group. Antibiot Chemother. 1961;10:702–708.
Pandey R.C., Narasimhachari N., Rinehart K.L., Jr., Millington D.S. Polyene antibiotics. Iv. Structure of chainin. J. Am. Chem. Soc. 1972;94:4306–4310. doi: 10.1021/ja00767a045. PubMed DOI
Trinci A., Chalkley L.J. Comparison of the effects of the polyenes amphotericin b and elizabethin on candida pseudotropicalis. Trans. Br. Mycol. Soc. 1983;80:491–495. doi: 10.1016/S0007-1536(83)80045-X. DOI
Cirillo V.P., Harsch M., Lampen J.O. Action of the polyene antibiotics filipin, nystatin and n-acetylcandidin on the yeast cell membrane. J. Gen. Microbiol. 1964;35:249–259. doi: 10.1099/00221287-35-2-249. PubMed DOI
Umezawa S., Tanaka Y., Ooka M., Shiotsu S. A new antifungal antibiotic, pentamycin. J. Antibiot. 1958;11:26–29. PubMed
Li Z., Rawlings B.J., Harrison P.H., Vederas J.C. Production of new polyene antibiotics by streptomyces cellulosae after addition of ethyl (z)-16-phenylhexadec-9-enoate. J. Antibiot. 1989;42:577–584. doi: 10.7164/antibiotics.42.577. PubMed DOI
Endo M., Hayashida T., Tsunematsu Y. [application of an antifungal antibiotic (kabicidin) in cultures of cells] Jpn. J. Med. Sci. Biol. 1959;12:173–174. doi: 10.7883/yoken1952.12.173. PubMed DOI
Brazhnikova M.G., Kudinova M.K., Lavrova M.F., Borisova V.N., Krugliak E.B. [isolation, purification and physico-chemical properties of antibiotic lienomycin] Antibiotiki. 1971;16:483–486. PubMed
Bycroft B.W., Payne D.J. Dictionary of Antibiotics and Related Substances: With CD-ROM. 2nd ed. CRC Press; Boca Raton, FL, USA: 2014.
Berdy J., Horváth I. Antibiotics produced by streptomyces vi. Pentafungin, a new antifungal antibiotic. J. Basic Microbiol. 2007;5:345–350.
Yao T., Liu Z., Li T., Zhang H., Liu J., Li H., Che Q., Zhu T., Li D., Li W. Characterization of the biosynthetic gene cluster of the polyene macrolide antibiotic reedsmycins from a marine-derived streptomyces strain. Microb. Cell Fact. 2018;17:98. doi: 10.1186/s12934-018-0943-6. PubMed DOI PMC
Van Arnam E.B., Ruzzini A.C., Sit C.S., Horn H., Pinto-Tomas A.A., Currie C.R., Clardy J. Selvamicin, an atypical antifungal polyene from two alternative genomic contexts. Proc. Natl. Acad. Sci. USA. 2016;113:12940–12945. doi: 10.1073/pnas.1613285113. PubMed DOI PMC
Guo J., Schlingmann G., Carter G.T., Nakanishi K., Berova N. Absolute stereochemistry of the strevertenes. Chirality. 2000;12:43–51. doi: 10.1002/(SICI)1520-636X(2000)12:1<43::AID-CHIR8>3.0.CO;2-N. PubMed DOI
Kim Y.P., Tomoda H., Iizima K., Fukuda T., Matsumoto A., Takahashi Y., Omura S. Takanawaenes, novel antifungal antibiotics produced by streptomyces sp. K99-5278. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiot. 2003;56:448–453. doi: 10.7164/antibiotics.56.448. PubMed DOI
Greule A., Intra B., Flemming S., Rommel M.G., Panbangred W., Bechthold A. The draft genome sequence of actinokineospora bangkokensis 44ehw(t) reveals the biosynthetic pathway of the antifungal thailandin compounds with unusual butylmalonyl-coa extender units. Molecules. 2016;21:1607. doi: 10.3390/molecules21111607. PubMed DOI PMC
Martin J.F., McDaniel L.E. Isolation, purification and properties of the hexaene macrolides candihexin i and candihexin ii. J. Antibiot. 1974;27:610–619. doi: 10.7164/antibiotics.27.610. PubMed DOI
Sakamoto J.M. [study on antifungal antibiotics. Ii. Cryptocidin, a new antibiotic produced by streptomycetes] J. Antibiot. 1959;12:21–23. PubMed
Barashkova N.P., Shenin Iu D., Omel’chenko V.N., Konev Iu E. [actinomyces chromogenes var. Graecus var. Nov., a producer of a new hexaene antibiotic] Antibiotiki. 1977;22:832–837. PubMed
Chakrabarti S., Chandra A.L. A new streptomycete and a new polyene antibiotic, acmycin. Folia Microbiol. (Praha) 1982;27:167–172. doi: 10.1007/BF02877395. PubMed DOI
Dutcher J.D. The discovery and development of amphotericin b. Dis. Chest. 1968;54((Suppl. S1)):296–298. doi: 10.1378/chest.54.Supplement_1.296. PubMed DOI
Kotler-Brajtburg J., Medoff G., Kobayashi G.S., Boggs S., Schlessinger D., Pandey R.C., Rinehart K.L., Jr. Classification of polyene antibiotics according to chemical structure and biological effects. Antimicrob. Agents Chemother. 1979;15:716–722. doi: 10.1128/AAC.15.5.716. PubMed DOI PMC
Kligman A.M., Lewis F.S. In vitro and in vivo activity of candicidin on pathogenic fungi. Proc. Soc. Exp. Biol. Med. 1953;82:399–404. doi: 10.3181/00379727-82-20128. PubMed DOI
Taber W.A., Vining L.C., Waksman S.A. Candidin, a new antifungal antibiotic produced by streptomyces viridoflavus. Antibiot Chemother. 1954;4:455–461. PubMed
Kruglikova L.F., Shenin Iu D. [characteristics of a new aromatic heptaenic antibiotic, flavumycin a] Antibiotiki. 1976;21:407–411. PubMed
Mohan R.R., Pianotti R.S., Martin J.F., Ringel S.M., Schwartz B.S., Bailey E.G., McDaniel L.E., Schaffner C.P. Fungimycin production, isolation, biosynthesis, and in vitro antifungal activity. Antimicrob. Agents Chemother. 1963;161:462–470. PubMed
Gokhale B.B. Hamycin--A new antifungal antibiotic. Arch. Dermatol. 1963;88:558–560. doi: 10.1001/archderm.1963.01590230066010. PubMed DOI
Filippova A.I., Solov’ev S.N., Vasil’eva N.G., Dumova A.M., Egorenkova A.N. [isomerization of polyene antibiotics with characteristics of isolevorin a2] Antibiotiki. 1972;17:932–937. PubMed
Filippova A.I., Lashkov G.I., Kozel S.P., Shenin Iu D. [spectrophotometric research on the photochemical isomerization of the polyene macrolide antibiotic levorin a2] Antibiot Med. Biotekhnol. 1987;32:749–754. PubMed
Borowski E., Malyshkina M., Soloviev S., Ziminski T. Isolation and characterization of levorin a and b, the heptaene macrolide antifungal antibiotics of “aromatic” subgroup. Chemotherapy. 1965;10:176–194. doi: 10.1159/000220406. PubMed DOI
Martinez-Quesada J., Torres-Rodriguez J.M., Roses-Codinachs M., Amaral-Olivera M. Minimal inhibitory concentrations of lucknomycin, a new polyenic derivative, for candida and aspergillus spp. Antimicrob. Agents Chemother. 1983;24:132–133. doi: 10.1128/AAC.24.1.132. PubMed DOI PMC
Luna T., Mazzolla R., Romano G., Blasi E. Potent antifungal effects of a new derivative of partricin a in a murine model of cerebral cryptococcosis. Antimicrob. Agents Chemother. 1997;41:706–708. doi: 10.1128/AAC.41.3.706. PubMed DOI PMC
Pawlak J., Sowinski P., Borowski E., Gariboldi P. Stereostructure of perimycin a. J. Antibiot. 1995;48:1034–1038. doi: 10.7164/antibiotics.48.1034. PubMed DOI
Mendizabal A.F., Inza R., Salaber J.A. [trichomycin: A new antibiotic for the treatment of colpitis caused by trichomonas & candida albicans] Rev. Asoc. Med. Argent. 1957;71:48–50. PubMed
Bortolo R., Spera S., Gugliemetti G., Cassani G. Ab023, novel polyene antibiotics. Ii. Isolation and structure determination. J. Antibiot. 1993;46:255–264. doi: 10.7164/antibiotics.46.255. PubMed DOI
Cai P., Kong F., Fink P., Ruppen M.E., Williamson R.T., Keiko T. Polyene antibiotics from streptomyces mediocidicus. J. Nat. Prod. 2007;70:215–219. doi: 10.1021/np060542f. PubMed DOI
McAlpine J.B., Bachmann B.O., Piraee M., Tremblay S., Alarco A.M., Zazopoulos E., Farnet C.M. Microbial genomics as a guide to drug discovery and structural elucidation: Eco-02301, a novel antifungal agent, as an example. J. Nat. Prod. 2005;68:493–496. doi: 10.1021/np0401664. PubMed DOI
Irschik H., Schummer D., Hofle G., Reichenbach H., Steinmetz H., Jansen R. Etnangien, a macrolide-polyene antibiotic from sorangium cellulosum that inhibits nucleic acid polymerases. J. Nat. Prod. 2007;70:1060–1063. doi: 10.1021/np070115h. PubMed DOI
Park H.S., Nah H.J., Kang S.H., Choi S.S., Kim E.S. Screening and isolation of a novel polyene-producing streptomyces strain inhibiting phytopathogenic fungi in the soil environment. Front. Bioeng. Biotechnol. 2021;9:692340. doi: 10.3389/fbioe.2021.692340. PubMed DOI PMC
Almeida E.L., Kaur N., Jennings L.K., Carrillo Rincon A.F., Jackson S.A., Thomas O.P., Dobson A.D.W. Genome mining coupled with osmac-based cultivation reveal differential production of surugamide a by the marine sponge isolate streptomyces sp. Sm17 when compared to its terrestrial relative s. Albidoflavus j1074. Microorganisms. 2019;7:394. doi: 10.3390/microorganisms7100394. PubMed DOI PMC
Chater K.F., Biro S., Lee K.J., Palmer T., Schrempf H. The complex extracellular biology of streptomyces. FEMS Microbiol. Rev. 2010;34:171–198. doi: 10.1111/j.1574-6976.2009.00206.x. PubMed DOI
Matsuda K., Kuranaga T., Sano A., Ninomiya A., Takada K., Wakimoto T. The revised structure of the cyclic octapeptide surugamide a. Chem. Pharm. Bull. 2019;67:476–480. doi: 10.1248/cpb.c19-00002. PubMed DOI
Umezawa K., Nakazawa K., Ikeda Y., Naganawa H., Kondo S. Polyoxypeptins a and b produced by streptomyces: Apoptosis-inducing cyclic depsipeptides containing the novel amino acid (2s,3r)-3-hydroxy-3-methylproline. J. Org. Chem. 1999;64:3034–3038. doi: 10.1021/jo981512n. PubMed DOI
Umezawa H. Bleomycin and other antitumor antibiotics of high molecular weight. Antimicrob. Agents Chemother. (Bethesda) 1965;5:1079–1085. PubMed
Johnson A.W. The chemistry of actinomycin d and related compounds. Ann. N. Y. Acad. Sci. 1960;89:336–341. doi: 10.1111/j.1749-6632.1960.tb20156.x. PubMed DOI
Giessen T.W., Franke K.B., Knappe T.A., Kraas F.I., Bosello M., Xie X., Linne U., Marahiel M.A. Isolation, structure elucidation, and biosynthesis of an unusual hydroxamic acid ester-containing siderophore from actinosynnema mirum. J. Nat. Prod. 2012;75:905–914. doi: 10.1021/np300046k. PubMed DOI
Kido G.S., Spyhalski E. Antimycin a, an antibiotic with insecticidal and miticidal properties. Science. 1950;112:172–173. doi: 10.1126/science.112.2902.172. PubMed DOI
Hatanaka H., Iwami M., Kino T., Goto T., Okuhara M. Fr-900520 and fr-900523, novel immunosuppressants isolated from a streptomyces. I. Taxonomy of the producing strain. J. Antibiot. (Tokyo) 1988;41:1586–1591. doi: 10.7164/antibiotics.41.1586. PubMed DOI
Andexer J.N., Kendrew S.G., Nur-e-Alam M., Lazos O., Foster T.A., Zimmermann A.S., Warneck T.D., Suthar D., Coates N.J., Koehn F.E., et al. Biosynthesis of the immunosuppressants fk506, fk520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc. Natl. Acad. Sci. USA. 2011;108:4776–4781. doi: 10.1073/pnas.1015773108. PubMed DOI PMC
He M., Haltli B., Summers M., Feng X., Hucul J. Isolation and characterization of meridamycin biosynthetic gene cluster from streptomyces sp. Nrrl 30748. Gene. 2006;377:109–118. doi: 10.1016/j.gene.2006.03.021. PubMed DOI
Doscher M.E., Wood I.B., Pankavich J.A., Ricks C.A. Efficacy of nemadectin, a new broad-spectrum endectocide, against natural infections of canine gastrointestinal helminths. Vet. Parasitol. 1989;34:255–259. doi: 10.1016/0304-4017(89)90055-1. PubMed DOI
Seto B. Rapamycin and mtor: A serendipitous discovery and implications for breast cancer. Clin. Transl. Med. 2012;1:29. doi: 10.1186/2001-1326-1-29. PubMed DOI PMC
Rhodes A., Fantes K.H., Boothroyd B., McGonagle M.P., Crosse R. Venturicidin: A new antifungal antibiotic of potential use in agriculture. Nature. 1961;192:952–954. doi: 10.1038/192952a0. PubMed DOI
Spizek J., Malek I., Suchy J., Vondracek M., Vanek Z. Metabolites of streptomyces noursei. V. Relation of the production of cycloheximide and actiphenol to the production of fungicidin. Folia Microbiol. 1965;10:263–266. PubMed
Seaton P.J., Gould S.J. New products related to kinamycin from streptomyces murayamaensis. Ii. Structures of pre-kinamycin, keto-anhydrokinamycin, and kinamycins e and f. J. Antibiot. 1989;42:189–197. doi: 10.7164/antibiotics.42.189. PubMed DOI
Zhang J., Li S., Wu X., Guo Z., Lu C., Shen Y. Nam7 hydroxylase is responsible for the formation of the naphthalenic ring in the biosynthesis of neoansamycins. Org. Lett. 2017;19:2442–2445. doi: 10.1021/acs.orglett.7b01083. PubMed DOI
Bhuyan B.K., Smith C.G. Differential interaction of nogalamycin with DNA of varying base composition. Proc. Natl. Acad. Sci. USA. 1965;54:566–572. doi: 10.1073/pnas.54.2.566. PubMed DOI PMC
Koshino H., Takahashi H., Osada H., Isono K. Reveromycins, new inhibitors of eukaryotic cell growth. Iii. Structures of reveromycins a, b, c and d. J. Antibiot. 1992;45:1420–1427. doi: 10.7164/antibiotics.45.1420. PubMed DOI
Liu W., Nonaka K., Nie L., Zhang J., Christenson S.D., Bae J., Van Lanen S.G., Zazopoulos E., Farnet C.M., Yang C.F., et al. The neocarzinostatin biosynthetic gene cluster from streptomyces carzinostaticus atcc 15944 involving two iterative type i polyketide synthases. Chem. Biol. 2005;12:293–302. doi: 10.1016/j.chembiol.2004.12.013. PubMed DOI
BeBoer C., Dietz A. The description and antibiotic production of streptomyces hygroscopicus var. Geldanus. J. Antibiot. 1976;29:1182–1188. PubMed
Herbrik A., Corretto E., Chronakova A., Langhansova H., Petraskova P., Hrdy J., Cihak M., Kristufek V., Bobek J., Petricek M., et al. A human lung-associated streptomyces sp. Tr1341 produces various secondary metabolites responsible for virulence, cytotoxicity and modulation of immune response. Front. Microbiol. 2019;10:3028. doi: 10.3389/fmicb.2019.03028. PubMed DOI PMC
Knopik-Skrocka A., Bielawski J. The mechanism of the hemolytic activity of polyene antibiotics. Cell Mol. Biol. Lett. 2002;7:31–48. PubMed
te Welscher Y.M., Jones L., van Leeuwen M.R., Dijksterhuis J., de Kruijff B., Eitzen G., Breukink E. Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrob. Agents Chemother. 2010;54:2618–2625. doi: 10.1128/AAC.01794-09. PubMed DOI PMC
Gray K.C., Palacios D.S., Dailey I., Endo M.M., Uno B.E., Wilcock B.C., Burke M.D. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA. 2012;109:2234–2239. doi: 10.1073/pnas.1117280109. PubMed DOI PMC
Elliott S.J., Srinivas S., Albert M.J., Alam K., Robins-Browne R.M., Gunzburg S.T., Mee B.J., Chang B.J. Characterization of the roles of hemolysin and other toxins in enteropathy caused by alpha-hemolytic escherichia coli linked to human diarrhea. Infect Immun. 1998;66:2040–2051. doi: 10.1128/IAI.66.5.2040-2051.1998. PubMed DOI PMC
Scherr N., Nguyen L. Mycobacterium versus streptomyces--We are different, we are the same. Curr. Opin. Microbiol. 2009;12:699–707. doi: 10.1016/j.mib.2009.10.003. PubMed DOI
Wurzer T. Bachelor’s Thesis. University of South Bohemia in České Budějovice; České Budějovice, Czech Republic: 2019. The Interaction of Streptomyces-like Bacteria and Model Microorganisms in Secondary Metabolite Production, Motility and Hemolytic Activities—Experimental.
Labeda D.P., Goodfellow M., Brown R., Ward A.C., Lanoot B., Vanncanneyt M., Swings J., Kim S.B., Liu Z., Chun J., et al. Phylogenetic study of the species within the family streptomycetaceae. Antonie Van Leeuwenhoek. 2012;101:73–104. doi: 10.1007/s10482-011-9656-0. PubMed DOI
Rajesh T., Jeon J.M., Kim Y.H., Kim H.J., Yi da H., Park S.H., Choi K.Y., Kim Y.G., Kim J., Jung S., et al. Functional analysis of the gene sco1782 encoding streptomyces hemolysin (s-hemolysin) in streptomyces coelicolor m145. Toxicon. 2013;71:159–165. doi: 10.1016/j.toxicon.2013.05.023. PubMed DOI
Harir M., Bendif H., Bellahcene M., Pogni Z.F.R. Streptomyces secondary metabolites. In: Enany S., editor. Basic Biology and Applications of Actinobacteria. IntechOpen; London, UK: 2018.
Bernal M.G., Campa-Cordova A.I., Saucedo P.E., Gonzalez M.C., Marrero R.M., Mazon-Suastegui J.M. Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture. Vet. World. 2015;8:170–176. doi: 10.14202/vetworld.2015.170-176. PubMed DOI PMC
Sheng Y., Ou Y., Hu X., Deng Z., Bai L., Kang Q. Generation of tetramycin b derivative with improved pharmacological property based on pathway engineering. Appl. Microbiol. Biotechnol. 2020;104:2561–2573. doi: 10.1007/s00253-020-10391-8. PubMed DOI
Cinar B., Demir Z., Tunca S. Heterologous expression of 8-demethyl-tetracenomycin (8-dmtc) affected streptomyces coelicolor life cycle. Braz. J. Microbiol. 2021;52:1107–1118. doi: 10.1007/s42770-021-00499-y. PubMed DOI PMC
Tenconi E., Traxler M.F., Hoebreck C., van Wezel G.P., Rigali S. Production of prodiginines is part of a programmed cell death process in streptomyces coelicolor. Front. Microbiol. 2018;9:1742. doi: 10.3389/fmicb.2018.01742. PubMed DOI PMC
Haro-Reyes T., Diaz-Peralta L., Galvan-Hernandez A., Rodriguez-Lopez A., Rodriguez-Fragoso L., Ortega-Blake I. Polyene antibiotics physical chemistry and their effect on lipid membranes; impacting biological processes and medical applications. Membranes. 2022;12:681. doi: 10.3390/membranes12070681. PubMed DOI PMC
Grubbs K.J., Surup F., Biedermann P.H.W., McDonald B.R., Klassen J.L., Carlson C.M., Clardy J., Currie C.R. Cycloheximide-producing streptomyces associated with xyleborinus saxesenii and xyleborus affinis fungus-farming ambrosia beetles. Front. Microbiol. 2020;11:562140. doi: 10.3389/fmicb.2020.562140. PubMed DOI PMC
Skelton J., Jusino M.A., Li Y., Bateman C., Thai P.H., Wu C., Lindner D.L., Hulcr J. Detecting symbioses in complex communities: The fungal symbionts of bark and ambrosia beetles within asian pines. Microb. Ecol. 2018;76:839–850. doi: 10.1007/s00248-018-1154-8. PubMed DOI
Goettler W., Kaltenpoth M., McDonald S., Strohm E. Comparative morphology of the symbiont cultivation glands in the antennae of female digger wasps of the genus philanthus (hymenoptera: Crabronidae) Front. Physiol. 2022;13:815494. doi: 10.3389/fphys.2022.815494. PubMed DOI PMC
Dhodary B., Spiteller D. Ammonia production by streptomyces symbionts of acromyrmex leaf-cutting ants strongly inhibits the fungal pathogen escovopsis. Microorganisms. 2021;9:1622. doi: 10.3390/microorganisms9081622. PubMed DOI PMC
Vergnes S., Gayrard D., Veyssière M., Toulotte J., Martinez Y., Dumont V., Bouchez O., Rey T., Dumas B. Phyllosphere colonization by a soil streptomyces sp. Promotes plant defense responses against fungal infection. Mol. Plant-Microbe Interact. MPMI. 2020;33:223–234. doi: 10.1094/MPMI-05-19-0142-R. PubMed DOI
Kim D.R., Cho G., Jeon C.W., Weller D.M., Thomashow L.S., Paulitz T.C., Kwak Y.S. A mutualistic interaction between streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 2019;10:4802. doi: 10.1038/s41467-019-12785-3. PubMed DOI PMC
Dohet L., Grégoire J.C., Berasategui A., Kaltenpoth M., Biedermann P.H. Bacterial and fungal symbionts of parasitic dendroctonus bark beetles. FEMS Microbiol. Ecol. 2016;92 doi: 10.1093/femsec/fiw129. PubMed DOI
Schlosser E., Gottlieb D. Mode of hemolytic action of the antifungal polyene antibiotic filipin. Z. Naturforsch. B. 1966;21:74–77. doi: 10.1515/znb-1966-0120. PubMed DOI
Kim J.D., Han J.W., Lee S.C., Lee D., Hwang I.C., Kim B.S. Disease control effect of strevertenes produced by streptomyces psammoticus against tomato fusarium wilt. J. Agric. Food Chem. 2011;59:1893–1899. doi: 10.1021/jf1038585. PubMed DOI
Shenin Y.D., Belakhov V.V., Araviiskii R.A. Nystatin: Methods of preparation, search for derivatives, and prospects for medicinal use (review) Pharm. Chem. J. 1993;27:84–92. doi: 10.1007/BF00781067. DOI
Brautaset T., Bruheim P., Sletta H., Hagen L., Ellingsen T.E., Strom A.R., Valla S., Zotchev S.B. Hexaene derivatives of nystatin produced as a result of an induced rearrangement within the nysc polyketide synthase gene in s. Noursei atcc 11455. Chem. Biol. 2002;9:367–373. doi: 10.1016/S1074-5521(02)00108-4. PubMed DOI
Asturias J.A., Liras P., Martin J.F. Phosphate control of pabs gene transcription during candicidin biosynthesis. Gene. 1990;93:79–84. doi: 10.1016/0378-1119(90)90139-I. PubMed DOI
Szczeblewski P., Laskowski T., Kubacki B., Dziergowska M., Liczmanska M., Grynda J., Kubica P., Kot-Wasik A., Borowski E. Analytical studies on ascosin, candicidin and levorin multicomponent antifungal antibiotic complexes. The stereostructure of ascosin a2. Sci. Rep. 2017;7:40158. doi: 10.1038/srep40158. PubMed DOI PMC
Brajtburg J., Medoff G., Kobayashi G.S., Elberg S., Finegold C. Permeabilizing and hemolytic action of large and small polyene antibiotics on human erythrocytes. Antimicrob. Agents Chemother. 1980;18:586–592. doi: 10.1128/AAC.18.4.586. PubMed DOI PMC
Hammond S.M., Kliger B.N. Mode of action of the polyene antibiotic candicidin: Binding factors in the wall of candida albicans. Antimicrob. Agents Chemother. 1976;9:561–568. doi: 10.1128/AAC.9.4.561. PubMed DOI PMC
Mikulik K., Bobek J., Zidkova J., Felsberg J. 6s rna modulates growth and antibiotic production in streptomyces coelicolor. Appl. Microbiol. Biotechnol. 2014;98:7185–7197. doi: 10.1007/s00253-014-5806-4. PubMed DOI
Bobek J., Strakova E., Zikova A., Vohradsky J. Changes in activity of metabolic and regulatory pathways during germination of s. Coelicolor. BMC Genom. 2014;15:1173. doi: 10.1186/1471-2164-15-1173. PubMed DOI PMC
Mikulik K., Suchan P., Bobek J. Changes in ribosome function induced by protein kinase associated with ribosomes of streptomyces collinus producing kirromycin. Biochem. Biophys. Res. Commun. 2001;289:434–443. doi: 10.1006/bbrc.2001.6017. PubMed DOI
Horinouchi S. A microbial hormone, a-factor, as a master switch for morphological differentiation and secondary metabolism in streptomyces griseus. Front. Biosci. 2002;7:d2045–d2057. PubMed
Takano E. Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 2006;9:287–294. doi: 10.1016/j.mib.2006.04.003. PubMed DOI
Yamanaka K., Oikawa H., Ogawa H.O., Hosono K., Shinmachi F., Takano H., Sakuda S., Beppu T., Ueda K. Desferrioxamine e produced by streptomyces griseus stimulates growth and development of streptomyces tanashiensis. Microbiology (Reading) 2005;151:2899–2905. doi: 10.1099/mic.0.28139-0. PubMed DOI
Lee H.J., Whang K.S. Streptomyces rhizosphaerihabitans sp. Nov. And streptomyces adustus sp. Nov., isolated from bamboo forest soil. Int. J. Syst. Evol. Microbiol. 2016;66:3573–3578. doi: 10.1099/ijsem.0.001236. PubMed DOI
Human Z.R., Moon K., Bae M., de Beer Z.W., Cha S., Wingfield M.J., Slippers B., Oh D.C., Venter S.N. Antifungal streptomyces spp. Associated with the infructescences of protea spp. In south africa. Front. Microbiol. 2016;7:1657. doi: 10.3389/fmicb.2016.01657. PubMed DOI PMC
Shirling E.B., Gottlieb D. Methods for characterization of streptomyces species1. Int. J. Syst. Evol. Microbiol. 1966;16:313–340.
Chun J., Oren A., Ventosa A., Christensen H., Arahal D.R., da Costa M.S., Rooney A.P., Yi H., Xu X.-W., De Meyer S., et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018;68:461–466. doi: 10.1099/ijsem.0.002516. PubMed DOI
Kotrbová L., Lara A.C., Corretto E., Scharfen J., Ulmann V., Petříčková K., Chroňáková A. Evaluation and comparison of antibiotic susceptibility profiles of streptomyces spp. From clinical specimens revealed common and region-dependent resistance patterns. Sci. Rep. 2022;12:1–12. doi: 10.1038/s41598-022-13094-4. PubMed DOI PMC
Chun J., Lee J.H., Jung Y., Kim M., Kim S., Kim B.K., Lim Y.W. Eztaxon: A web-based tool for the identification of prokaryotes based on 16s ribosomal rna gene sequences. Int. J. Syst. Evol. Microbiol. 2007;57:2259–2261. doi: 10.1099/ijs.0.64915-0. PubMed DOI
Schoch C.L., Ciufo S., Domrachev M., Hotton C.L., Kannan S., Khovanskaya R., Leipe D., McVeigh R., O’Neill K., Robbertse B., et al. Ncbi taxonomy: A comprehensive update on curation, resources and tools. Database. 2020;2020:baaa062. doi: 10.1093/database/baaa062. PubMed DOI PMC
Edgar R.C. Muscle: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004;5:113. doi: 10.1186/1471-2105-5-113. PubMed DOI PMC
Stamatakis A. Raxml version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Letunic I., Bork P. Interactive tree of life (itol) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC
Ochi K. Metabolic initiation of differentiation and secondary metabolism by streptomyces griseus: Significance of the stringent response (ppgpp) and gtp content in relation to a factor. J. Bacteriol. 1987;169:3608–3616. doi: 10.1128/jb.169.8.3608-3616.1987. PubMed DOI PMC
Kamenik Z., Hadacek F., Mareckova M., Ulanova D., Kopecky J., Chobot V., Plhackova K., Olsovska J. Ultra-high-performance liquid chromatography fingerprinting method for chemical screening of metabolites in cultivation broth. J. Chromatogr. A. 2010;1217:8016–8025. doi: 10.1016/j.chroma.2010.08.031. PubMed DOI
Cihak M., Kamenik Z., Smidova K., Bergman N., Benada O., Kofronova O., Petrickova K., Bobek J. Secondary metabolites produced during the germination of streptomyces coelicolor. Front. Microbiol. 2017;8:2495. doi: 10.3389/fmicb.2017.02495. PubMed DOI PMC
Guan S., Ji C., Zhou T., Li J., Ma Q., Niu T. Aflatoxin b(1) degradation by stenotrophomonas maltophilia and other microbes selected using coumarin medium. Int. J. Mol. Sci. 2008;9:1489–1503. doi: 10.3390/ijms9081489. PubMed DOI PMC