ATM-Dependent Phosphorylation of Hepatitis B Core Protein in Response to Genotoxic Stress

. 2021 Dec 05 ; 13 (12) : . [epub] 20211205

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34960710

Chronic hepatitis caused by infection with the Hepatitis B virus is a life-threatening condition. In fact, 1 million people die annually due to liver cirrhosis or hepatocellular carcinoma. Recently, several studies demonstrated a molecular connection between the host DNA damage response (DDR) pathway and HBV replication and reactivation. Here, we investigated the role of Ataxia-telangiectasia-mutated (ATM) and Ataxia telangiectasia and Rad3-related (ATR) PI3-kinases in phosphorylation of the HBV core protein (HBc). We determined that treatment of HBc-expressing hepatocytes with genotoxic agents, e.g., etoposide or hydrogen peroxide, activated the host ATM-Chk2 pathway, as determined by increased phosphorylation of ATM at Ser1981 and Chk2 at Thr68. The activation of ATM led, in turn, to increased phosphorylation of cytoplasmic HBc at serine-glutamine (SQ) motifs located in its C-terminal domain. Conversely, down-regulation of ATM using ATM-specific siRNAs or inhibitor effectively reduced etoposide-induced HBc phosphorylation. Detailed mutation analysis of S-to-A HBc mutants revealed that S170 (S168 in a 183-aa HBc variant) is the primary site targeted by ATM-regulated phosphorylation. Interestingly, mutation of two major phosphorylation sites involving serines at positions 157 and 164 (S155 and S162 in a 183-aa HBc variant) resulted in decreased etoposide-induced phosphorylation, suggesting that the priming phosphorylation at these serine-proline (SP) sites is vital for efficient phosphorylation of SQ motifs. Notably, the mutation of S172 (S170 in a 183-aa HBc variant) had the opposite effect and resulted in massively up-regulated phosphorylation of HBc, particularly at S170. Etoposide treatment of HBV infected HepG2-NTCP cells led to increased levels of secreted HBe antigen and intracellular HBc protein. Together, our studies identified HBc as a substrate for ATM-mediated phosphorylation and mapped the phosphorylation sites. The increased expression of HBc and HBe antigens in response to genotoxic stress supports the idea that the ATM pathway may provide growth advantage to the replicating virus.

Zobrazit více v PubMed

Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J. Viral Hepat. 2004;11:97–107. doi: 10.1046/j.1365-2893.2003.00487.x. PubMed DOI

Torres H.A., Davila M. Reactivation of hepatitis B virus and hepatitis C virus in patients with cancer. Nat. Rev. Clin. Oncol. 2012;9:156–166. doi: 10.1038/nrclinonc.2012.1. PubMed DOI

Lucifora J., Arzberger S., Durantel D., Belloni L., Strubin M., Levrero M., Zoulim F., Hantz O., Protzer U. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol. 2011;55:996–1003. doi: 10.1016/j.jhep.2011.02.015. PubMed DOI

Robinson W.S. The genome of hepatitis B virus. Annu. Rev. Microbiol. 1977;31:357–377. doi: 10.1146/annurev.mi.31.100177.002041. PubMed DOI

Seeger C., Mason W.S. Molecular biology of hepatitis B virus infection. Virology. 2015;479–480:672–686. doi: 10.1016/j.virol.2015.02.031. PubMed DOI PMC

Diab A., Foca A., Zoulim F., Durantel D., Andrisani O. The diverse functions of the hepatitis B core/capsid protein (HBc) in the viral life cycle: Implications for the development of HBc-targeting antivirals. Antivir. Res. 2018;149:211–220. doi: 10.1016/j.antiviral.2017.11.015. PubMed DOI PMC

Chong C.K., Cheng C.Y.S., Tsoi S.Y.J., Huang F.Y., Liu F., Seto W.K., Lai C.L., Yuen M.F., Wong D.K. Role of hepatitis B core protein in HBV transcription and recruitment of histone acetyltransferases to cccDNA minichromosome. Antivir. Res. 2017;144:1–7. doi: 10.1016/j.antiviral.2017.05.003. PubMed DOI

Zlotnick A., Venkatakrishnan B., Tan Z., Lewellyn E., Turner W., Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antivir. Res. 2015;121:82–93. doi: 10.1016/j.antiviral.2015.06.020. PubMed DOI PMC

Birnbaum F., Nassal M. Hepatitis B virus nucleocapsid assembly: Primary structure requirements in the core protein. J. Virol. 1990;64:3319–3330. doi: 10.1128/jvi.64.7.3319-3330.1990. PubMed DOI PMC

Gallina A., Bonelli F., Zentilin L., Rindi G., Muttini M., Milanesi G. A recombinant hepatitis B core antigen polypeptide with the protamine-like domain deleted self-assembles into capsid particles but fails to bind nucleic acids. J. Virol. 1989;63:4645–4652. doi: 10.1128/jvi.63.11.4645-4652.1989. PubMed DOI PMC

Chu T.H., Liou A.T., Su P.Y., Wu H.N., Shih C. Nucleic acid chaperone activity associated with the arginine-rich domain of human hepatitis B virus core protein. J. Virol. 2014;88:2530–2543. doi: 10.1128/JVI.03235-13. PubMed DOI PMC

Li H.C., Huang E.Y., Su P.Y., Wu S.Y., Yang C.C., Lin Y.S., Chang W.C., Shih C. Nuclear export and import of human hepatitis B virus capsid protein and particles. PLoS Pathog. 2010;6:e1001162. doi: 10.1371/journal.ppat.1001162. PubMed DOI PMC

Yang C.C., Li H.C., Shih C. A Homokaryon Assay for Nucleocytoplasmic Shuttling Activity of HBV Core Protein. Methods Mol. Biol. 2017;1540:53–58. doi: 10.1007/978-1-4939-6700-1_5. PubMed DOI

de Rocquigny H., Rat V., Pastor F., Darlix J.L., Hourioux C., Roingeard P. Phosphorylation of the Arginine-Rich C-Terminal Domains of the Hepatitis B Virus (HBV) Core Protein as a Fine Regulator of the Interaction between HBc and Nucleic Acid. Viruses. 2020;12:738. doi: 10.3390/v12070738. PubMed DOI PMC

Su P.Y., Yang C.J., Chu T.H., Chang C.H., Chiang C., Tang F.M., Lee C.Y., Shih C. HBV maintains electrostatic homeostasis by modulating negative charges from phosphoserine and encapsidated nucleic acids. Sci. Rep. 2016;6:38959. doi: 10.1038/srep38959. PubMed DOI PMC

Daub H., Blencke S., Habenberger P., Kurtenbach A., Dennenmoser J., Wissing J., Ullrich A., Cotten M. Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein. J. Virol. 2002;76:8124–8137. doi: 10.1128/JVI.76.16.8124-8137.2002. PubMed DOI PMC

Jung J., Hwang S.G., Chwae Y.J., Park S., Shin H.J., Kim K. Phosphoacceptors threonine 162 and serines 170 and 178 within the carboxyl-terminal RRRS/T motif of the hepatitis B virus core protein make multiple contributions to hepatitis B virus replication. J. Virol. 2014;88:8754–8767. doi: 10.1128/JVI.01343-14. PubMed DOI PMC

Melegari M., Wolf S.K., Schneider R.J. Hepatitis B virus DNA replication is coordinated by core protein serine phosphorylation and HBx expression. J. Virol. 2005;79:9810–9820. doi: 10.1128/JVI.79.15.9810-9820.2005. PubMed DOI PMC

Heger-Stevic J., Zimmermann P., Lecoq L., Bottcher B., Nassal M. Hepatitis B virus core protein phosphorylation: Identification of the SRPK1 target sites and impact of their occupancy on RNA binding and capsid structure. PLoS Pathog. 2018;14:e1007488. doi: 10.1371/journal.ppat.1007488. PubMed DOI PMC

Ludgate L., Liu K., Luckenbaugh L., Streck N., Eng S., Voitenleitner C., Delaney W.E.T., Hu J. Cell-Free Hepatitis B Virus Capsid Assembly Dependent on the Core Protein C-Terminal Domain and Regulated by Phosphorylation. J. Virol. 2016;90:5830–5844. doi: 10.1128/JVI.00394-16. PubMed DOI PMC

Yang F. Post-translational Modification Control of HBV Biological Processes. Front. Microbiol. 2018;9:2661. doi: 10.3389/fmicb.2018.02661. PubMed DOI PMC

Diab A., Foca A., Fusil F., Lahlali T., Jalaguier P., Amirache F., N’Guyen L., Isorce N., Cosset F.L., Zoulim F., et al. Polo-like-kinase 1 is a proviral host factor for hepatitis B virus replication. Hepatology. 2017;66:1750–1765. doi: 10.1002/hep.29236. PubMed DOI PMC

Langerova H., Lubyova B., Zabransky A., Hubalek M., Glendova K., Aillot L., Hodek J., Strunin D., Janovec V., Hirsch I., et al. Hepatitis B Core Protein Is Post-Translationally Modified through K29-Linked Ubiquitination. Cells. 2020;9:2547. doi: 10.3390/cells9122547. PubMed DOI PMC

Lubyova B., Hodek J., Zabransky A., Prouzova H., Hubalek M., Hirsch I., Weber J. PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core. PLoS ONE. 2017;12:e0186982. doi: 10.1371/journal.pone.0186982. PubMed DOI PMC

Lubyova B., Weber J. Posttranslational modifications of HBV core protein. Acta Virol. 2020;64:177–186. doi: 10.4149/av_2020_207. PubMed DOI

Abraham R.T. PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair. 2004;3:883–887. doi: 10.1016/j.dnarep.2004.04.002. PubMed DOI

Lovejoy C.A., Cortez D. Common mechanisms of PIKK regulation. DNA Repair. 2009;8:1004–1008. doi: 10.1016/j.dnarep.2009.04.006. PubMed DOI PMC

Smith J., Tho L.M., Xu N., Gillespie D.A. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv. Cancer Res. 2010;108:73–112. doi: 10.1016/B978-0-12-380888-2.00003-0. PubMed DOI

Awasthi P., Foiani M., Kumar A. ATM and ATR signaling at a glance. J. Cell Sci. 2015;128:4255–4262. doi: 10.1242/jcs.169730. PubMed DOI

Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R., 3rd, Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N., Lerenthal Y., et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–1166. doi: 10.1126/science.1140321. PubMed DOI

Zhao F., Hou N.B., Song T., He X., Zheng Z.R., Ma Q.J., Li L., Zhang Y.H., Zhong H. Cellular DNA repair cofactors affecting hepatitis B virus infection and replication. World J. Gastroenterol. 2008;14:5059–5065. doi: 10.3748/wjg.14.5059. PubMed DOI PMC

Zhao F., Hou N.B., Yang X.L., He X., Liu Y., Zhang Y.H., Wei C.W., Song T., Li L., Ma Q.J., et al. Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection. World J. Gastroenterol. 2008;14:6163–6170. doi: 10.3748/wjg.14.6163. PubMed DOI PMC

Kim S., Lee H.S., Ji J.H., Cho M.Y., Yoo Y.S., Park Y.Y., Cha H.J., Lee Y., Kim Y., Cho H. Hepatitis B virus X protein activates the ATM-Chk2 pathway and delays cell cycle progression. J. Gen. Virol. 2015;96:2242–2251. doi: 10.1099/vir.0.000150. PubMed DOI

Kostyusheva A., Brezgin S., Bayurova E., Gordeychuk I., Isaguliants M., Goptar I., Urusov F., Nikiforova A., Volchkova E., Kostyushev D., et al. ATM and ATR Expression Potentiates HBV Replication and Contributes to Reactivation of HBV Infection upon DNA Damage. Viruses. 2019;11:997. doi: 10.3390/v11110997. PubMed DOI PMC

Luo J., Luckenbaugh L., Hu H., Yan Z., Gao L., Hu J. Involvement of Host ATR-CHK1 Pathway in Hepatitis B Virus Covalently Closed Circular DNA Formation. MBio. 2020;11:e03423-19. doi: 10.1128/mBio.03423-19. PubMed DOI PMC

Bartek J., Lukas J. DNA repair: Damage alert. Nature. 2003;421:486–488. doi: 10.1038/421486a. PubMed DOI

Chaudhary P., Sharma R., Sahu M., Vishwanatha J.K., Awasthi S., Awasthi Y.C. 4-Hydroxynonenal induces G2/M phase cell cycle arrest by activation of the ataxia telangiectasia mutated and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) signaling pathway. J. Biol. Chem. 2013;288:20532–20546. doi: 10.1074/jbc.M113.467662. PubMed DOI PMC

Everett R.D. Interactions between DNA viruses, ND10 and the DNA damage response. Cell Microbiol. 2006;8:365–374. doi: 10.1111/j.1462-5822.2005.00677.x. PubMed DOI

Lilley C.E., Weitzman M.D. Keeping viruses in Chk: DNA damage signaling puts the brakes on transformation. Cell Host Microbe. 2010;8:464–466. doi: 10.1016/j.chom.2010.11.010. PubMed DOI

Weitzman M.D., Fradet-Turcotte A. Virus DNA Replication and the Host DNA Damage Response. Annu. Rev. Virol. 2018;5:141–164. doi: 10.1146/annurev-virology-092917-043534. PubMed DOI PMC

Pancholi N.J., Price A.M., Weitzman M.D. Take your PIKK: Tumour viruses and DNA damage response pathways. Philos. Trans. R Soc. Lond B Biol. Sci. 2017;372:20160269. doi: 10.1098/rstb.2016.0269. PubMed DOI PMC

Xi J., Luckenbaugh L., Hu J. Multiple roles of PP2A binding motif in hepatitis B virus core linker and PP2A in regulating core phosphorylation state and viral replication. PLoS Pathog. 2021;17:e1009230. doi: 10.1371/journal.ppat.1009230. PubMed DOI PMC

Basagoudanavar S.H., Perlman D.H., Hu J. Regulation of hepadnavirus reverse transcription by dynamic nucleocapsid phosphorylation. J. Virol. 2007;81:1641–1649. doi: 10.1128/JVI.01671-06. PubMed DOI PMC

Gazina E.V., Fielding J.E., Lin B., Anderson D.A. Core protein phosphorylation modulates pregenomic RNA encapsidation to different extents in human and duck hepatitis B viruses. J. Virol. 2000;74:4721–4728. doi: 10.1128/jvi.74.10.4721-4728.2000. PubMed DOI PMC

Lewellyn E.B., Loeb D.D. The arginine clusters of the carboxy-terminal domain of the core protein of hepatitis B virus make pleiotropic contributions to genome replication. J. Virol. 2011;85:1298–1309. doi: 10.1128/JVI.01957-10. PubMed DOI PMC

Kock J., Nassal M., Deres K., Blum H.E., von Weizsacker F. Hepatitis B virus nucleocapsids formed by carboxy-terminally mutated core proteins contain spliced viral genomes but lack full-size DNA. J. Virol. 2004;78:13812–13818. doi: 10.1128/JVI.78.24.13812-13818.2004. PubMed DOI PMC

Le Pogam S., Chua P.K., Newman M., Shih C. Exposure of RNA templates and encapsidation of spliced viral RNA are influenced by the arginine-rich domain of human hepatitis B virus core antigen (HBcAg 165–173) J. Virol. 2005;79:1871–1887. doi: 10.1128/JVI.79.3.1871-1887.2005. PubMed DOI PMC

Newman M., Chua P.K., Tang F.M., Su P.Y., Shih C. Testing an electrostatic interaction hypothesis of hepatitis B virus capsid stability by using an in vitro capsid disassembly/reassembly system. J. Virol. 2009;83:10616–10626. doi: 10.1128/JVI.00749-09. PubMed DOI PMC

Chua P.K., Tang F.M., Huang J.Y., Suen C.S., Shih C. Testing the balanced electrostatic interaction hypothesis of hepatitis B virus DNA synthesis by using an in vivo charge rebalance approach. J. Virol. 2010;84:2340–2351. doi: 10.1128/JVI.01666-09. PubMed DOI PMC

Hatton T., Zhou S., Standring D.N. RNA- and DNA-binding activities in hepatitis B virus capsid protein: A model for their roles in viral replication. J. Virol. 1992;66:5232–5241. doi: 10.1128/jvi.66.9.5232-5241.1992. PubMed DOI PMC

Cui X., Luckenbaugh L., Bruss V., Hu J. Alteration of Mature Nucleocapsid and Enhancement of Covalently Closed Circular DNA Formation by Hepatitis B Virus Core Mutants Defective in Complete-Virion Formation. J. Virol. 2015;89:10064–10072. doi: 10.1128/JVI.01481-15. PubMed DOI PMC

Hu Z., Ban H., Zheng H., Liu M., Chang J., Guo J.T. Protein phosphatase 1 catalyzes HBV core protein dephosphorylation and is co-packaged with viral pregenomic RNA into nucleocapsids. PLoS Pathog. 2020;16:e1008669. doi: 10.1371/journal.ppat.1008669. PubMed DOI PMC

Ludgate L., Ning X., Nguyen D.H., Adams C., Mentzer L., Hu J. Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids. J. Virol. 2012;86:12237–12250. doi: 10.1128/JVI.01218-12. PubMed DOI PMC

Luo J., Xi J., Gao L., Hu J. Role of Hepatitis B virus capsid phosphorylation in nucleocapsid disassembly and covalently closed circular DNA formation. PLoS Pathog. 2020;16:e1008459. doi: 10.1371/journal.ppat.1008459. PubMed DOI PMC

Okabe M., Enomoto M., Maeda H., Kuroki K., Ohtsuki K. Biochemical characterization of suramin as a selective inhibitor for the PKA-mediated phosphorylation of HBV core protein in vitro. Biol. Pharm. Bull. 2006;29:1810–1814. doi: 10.1248/bpb.29.1810. PubMed DOI

Wittkop L., Schwarz A., Cassany A., Grun-Bernhard S., Delaleau M., Rabe B., Cazenave C., Gerlich W., Glebe D., Kann M. Inhibition of protein kinase C phosphorylation of hepatitis B virus capsids inhibits virion formation and causes intracellular capsid accumulation. Cell Microbiol. 2010;12:962–975. doi: 10.1111/j.1462-5822.2010.01444.x. PubMed DOI

Barlow C., Ribaut-Barassin C., Zwingman T.A., Pope A.J., Brown K.D., Owens J.W., Larson D., Harrington E.A., Haeberle A.M., Mariani J., et al. ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc. Natl. Acad. Sci. USA. 2000;97:871–876. doi: 10.1073/pnas.97.2.871. PubMed DOI PMC

Lim D.S., Kirsch D.G., Canman C.E., Ahn J.H., Ziv Y., Newman L.S., Darnell R.B., Shiloh Y., Kastan M.B. ATM binds to beta-adaptin in cytoplasmic vesicles. Proc. Natl. Acad. Sci. USA. 1998;95:10146–10151. doi: 10.1073/pnas.95.17.10146. PubMed DOI PMC

Oka A., Takashima S. Expression of the ataxia-telangiectasia gene (ATM) product in human cerebellar neurons during development. Neurosci. Lett. 1998;252:195–198. doi: 10.1016/S0304-3940(98)00576-X. PubMed DOI

Watters D., Kedar P., Spring K., Bjorkman J., Chen P., Gatei M., Birrell G., Garrone B., Srinivasa P., Crane D.I., et al. Localization of a portion of extranuclear ATM to peroxisomes. J. Biol. Chem. 1999;274:34277–34282. doi: 10.1074/jbc.274.48.34277. PubMed DOI

Guo Z., Kozlov S., Lavin M.F., Person M.D., Paull T.T. ATM activation by oxidative stress. Science. 2010;330:517–521. doi: 10.1126/science.1192912. PubMed DOI

Stagni V., Ferri A., Cirotti C., Barila D. ATM Kinase-Dependent Regulation of Autophagy: A Key Player in Senescence? Front Cell Dev. Biol. 2020;8:599048. doi: 10.3389/fcell.2020.599048. PubMed DOI PMC

Fu X., Wan S., Lyu Y.L., Liu L.F., Qi H. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS ONE. 2008;3:e2009. doi: 10.1371/journal.pone.0002009. PubMed DOI PMC

Tanaka T., Halicka H.D., Traganos F., Seiter K., Darzynkiewicz Z. Induction of ATM activation, histone H2AX phosphorylation and apoptosis by etoposide: Relation to cell cycle phase. Cell Cycle. 2007;6:371–376. doi: 10.4161/cc.6.3.3835. PubMed DOI

Zhang A., Lyu Y.L., Lin C.P., Zhou N., Azarova A.M., Wood L.M., Liu L.F. A protease pathway for the repair of topoisomerase II-DNA covalent complexes. J. Biol. Chem. 2006;281:35997–36003. doi: 10.1074/jbc.M604149200. PubMed DOI

Slagle B.L., Andrisani O.M., Bouchard M.J., Lee C.G., Ou J.H., Siddiqui A. Technical standards for hepatitis B virus X protein (HBx) research. Hepatology. 2015;61:1416–1424. doi: 10.1002/hep.27360. PubMed DOI PMC

Aleem A., Al Amoudi S., Al-Mashhadani S., Siddiqui N. Haemophagocytic syndrome associated with hepatitis-B virus infection responding to etoposide. Clin. Lab. Haematol. 2005;27:395–398. doi: 10.1111/j.1365-2257.2005.00728.x. PubMed DOI

Cheng J.C., Liu M.C., Tsai S.Y., Fang W.T., Jer-Min Jian J., Sung J.L. Unexpectedly frequent hepatitis B reactivation by chemoradiation in postgastrectomy patients. Cancer. 2004;101:2126–2133. doi: 10.1002/cncr.20591. PubMed DOI

Zaman S., Melia W., Johnson P., White Y., Williams R. Effect of cytotoxic chemotherapy on hepatitis B viral markers in patients with hepatocellular carcinoma. Clin. Oncol. 1984;10:247–252. PubMed

Niitsu N., Hagiwara Y., Tanae K., Kohri M., Takahashi N. Prospective analysis of hepatitis B virus reactivation in patients with diffuse large B-cell lymphoma after rituximab combination chemotherapy. J. Clin. Oncol. 2010;28:5097–5100. doi: 10.1200/JCO.2010.29.7531. PubMed DOI

Faggioli P., De Paschale M., Tocci A., Luoni M., Fava S., De Paoli A., Tosi A., Cassi E. Acute hepatic toxicity during cyclic chemotherapy in non Hodgkin’s lymphoma. Haematologica. 1997;82:38–42. PubMed

Dansako H., Ueda Y., Satoh S., Kato N. Extracellular vesicles activate ATM-Chk2 signaling pathway through the intercellular transfer of mitochondrial DNA in HBV-infected human hepatocytes. FASEB J. 2021;35:e21680. doi: 10.1096/fj.202002678R. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?

. 2022 Jun 14 ; 14 (6) : . [epub] 20220614

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...