ATM-Dependent Phosphorylation of Hepatitis B Core Protein in Response to Genotoxic Stress
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34960710
PubMed Central
PMC8705010
DOI
10.3390/v13122438
PII: v13122438
Knihovny.cz E-zdroje
- Klíčová slova
- ATM, ATR, DNA damage response pathway, HBV core protein, serine phosphorylation,
- MeSH
- aminokyselinové motivy MeSH
- ATM protein metabolismus MeSH
- buňky Hep G2 MeSH
- checkpoint kinasa 2 metabolismus MeSH
- cytoplazma metabolismus virologie MeSH
- etoposid farmakologie MeSH
- fosforylace MeSH
- hepatitida B - antigeny e metabolismus MeSH
- hepatocyty virologie MeSH
- lidé MeSH
- peroxid vodíku farmakologie MeSH
- poškození DNA * MeSH
- proteiny virového jádra chemie metabolismus MeSH
- replikace viru účinky léků MeSH
- serin metabolismus MeSH
- trans-aktivátory genetika metabolismus MeSH
- virové regulační a přídatné proteiny genetika metabolismus MeSH
- virus hepatitidy B účinky léků fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ATM protein, human MeSH Prohlížeč
- ATM protein MeSH
- checkpoint kinasa 2 MeSH
- CHEK2 protein, human MeSH Prohlížeč
- etoposid MeSH
- hepatitida B - antigeny e MeSH
- hepatitis B virus X protein MeSH Prohlížeč
- peroxid vodíku MeSH
- proteiny virového jádra MeSH
- serin MeSH
- trans-aktivátory MeSH
- virové regulační a přídatné proteiny MeSH
Chronic hepatitis caused by infection with the Hepatitis B virus is a life-threatening condition. In fact, 1 million people die annually due to liver cirrhosis or hepatocellular carcinoma. Recently, several studies demonstrated a molecular connection between the host DNA damage response (DDR) pathway and HBV replication and reactivation. Here, we investigated the role of Ataxia-telangiectasia-mutated (ATM) and Ataxia telangiectasia and Rad3-related (ATR) PI3-kinases in phosphorylation of the HBV core protein (HBc). We determined that treatment of HBc-expressing hepatocytes with genotoxic agents, e.g., etoposide or hydrogen peroxide, activated the host ATM-Chk2 pathway, as determined by increased phosphorylation of ATM at Ser1981 and Chk2 at Thr68. The activation of ATM led, in turn, to increased phosphorylation of cytoplasmic HBc at serine-glutamine (SQ) motifs located in its C-terminal domain. Conversely, down-regulation of ATM using ATM-specific siRNAs or inhibitor effectively reduced etoposide-induced HBc phosphorylation. Detailed mutation analysis of S-to-A HBc mutants revealed that S170 (S168 in a 183-aa HBc variant) is the primary site targeted by ATM-regulated phosphorylation. Interestingly, mutation of two major phosphorylation sites involving serines at positions 157 and 164 (S155 and S162 in a 183-aa HBc variant) resulted in decreased etoposide-induced phosphorylation, suggesting that the priming phosphorylation at these serine-proline (SP) sites is vital for efficient phosphorylation of SQ motifs. Notably, the mutation of S172 (S170 in a 183-aa HBc variant) had the opposite effect and resulted in massively up-regulated phosphorylation of HBc, particularly at S170. Etoposide treatment of HBV infected HepG2-NTCP cells led to increased levels of secreted HBe antigen and intracellular HBc protein. Together, our studies identified HBc as a substrate for ATM-mediated phosphorylation and mapped the phosphorylation sites. The increased expression of HBc and HBe antigens in response to genotoxic stress supports the idea that the ATM pathway may provide growth advantage to the replicating virus.
Zobrazit více v PubMed
Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J. Viral Hepat. 2004;11:97–107. doi: 10.1046/j.1365-2893.2003.00487.x. PubMed DOI
Torres H.A., Davila M. Reactivation of hepatitis B virus and hepatitis C virus in patients with cancer. Nat. Rev. Clin. Oncol. 2012;9:156–166. doi: 10.1038/nrclinonc.2012.1. PubMed DOI
Lucifora J., Arzberger S., Durantel D., Belloni L., Strubin M., Levrero M., Zoulim F., Hantz O., Protzer U. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol. 2011;55:996–1003. doi: 10.1016/j.jhep.2011.02.015. PubMed DOI
Robinson W.S. The genome of hepatitis B virus. Annu. Rev. Microbiol. 1977;31:357–377. doi: 10.1146/annurev.mi.31.100177.002041. PubMed DOI
Seeger C., Mason W.S. Molecular biology of hepatitis B virus infection. Virology. 2015;479–480:672–686. doi: 10.1016/j.virol.2015.02.031. PubMed DOI PMC
Diab A., Foca A., Zoulim F., Durantel D., Andrisani O. The diverse functions of the hepatitis B core/capsid protein (HBc) in the viral life cycle: Implications for the development of HBc-targeting antivirals. Antivir. Res. 2018;149:211–220. doi: 10.1016/j.antiviral.2017.11.015. PubMed DOI PMC
Chong C.K., Cheng C.Y.S., Tsoi S.Y.J., Huang F.Y., Liu F., Seto W.K., Lai C.L., Yuen M.F., Wong D.K. Role of hepatitis B core protein in HBV transcription and recruitment of histone acetyltransferases to cccDNA minichromosome. Antivir. Res. 2017;144:1–7. doi: 10.1016/j.antiviral.2017.05.003. PubMed DOI
Zlotnick A., Venkatakrishnan B., Tan Z., Lewellyn E., Turner W., Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antivir. Res. 2015;121:82–93. doi: 10.1016/j.antiviral.2015.06.020. PubMed DOI PMC
Birnbaum F., Nassal M. Hepatitis B virus nucleocapsid assembly: Primary structure requirements in the core protein. J. Virol. 1990;64:3319–3330. doi: 10.1128/jvi.64.7.3319-3330.1990. PubMed DOI PMC
Gallina A., Bonelli F., Zentilin L., Rindi G., Muttini M., Milanesi G. A recombinant hepatitis B core antigen polypeptide with the protamine-like domain deleted self-assembles into capsid particles but fails to bind nucleic acids. J. Virol. 1989;63:4645–4652. doi: 10.1128/jvi.63.11.4645-4652.1989. PubMed DOI PMC
Chu T.H., Liou A.T., Su P.Y., Wu H.N., Shih C. Nucleic acid chaperone activity associated with the arginine-rich domain of human hepatitis B virus core protein. J. Virol. 2014;88:2530–2543. doi: 10.1128/JVI.03235-13. PubMed DOI PMC
Li H.C., Huang E.Y., Su P.Y., Wu S.Y., Yang C.C., Lin Y.S., Chang W.C., Shih C. Nuclear export and import of human hepatitis B virus capsid protein and particles. PLoS Pathog. 2010;6:e1001162. doi: 10.1371/journal.ppat.1001162. PubMed DOI PMC
Yang C.C., Li H.C., Shih C. A Homokaryon Assay for Nucleocytoplasmic Shuttling Activity of HBV Core Protein. Methods Mol. Biol. 2017;1540:53–58. doi: 10.1007/978-1-4939-6700-1_5. PubMed DOI
de Rocquigny H., Rat V., Pastor F., Darlix J.L., Hourioux C., Roingeard P. Phosphorylation of the Arginine-Rich C-Terminal Domains of the Hepatitis B Virus (HBV) Core Protein as a Fine Regulator of the Interaction between HBc and Nucleic Acid. Viruses. 2020;12:738. doi: 10.3390/v12070738. PubMed DOI PMC
Su P.Y., Yang C.J., Chu T.H., Chang C.H., Chiang C., Tang F.M., Lee C.Y., Shih C. HBV maintains electrostatic homeostasis by modulating negative charges from phosphoserine and encapsidated nucleic acids. Sci. Rep. 2016;6:38959. doi: 10.1038/srep38959. PubMed DOI PMC
Daub H., Blencke S., Habenberger P., Kurtenbach A., Dennenmoser J., Wissing J., Ullrich A., Cotten M. Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein. J. Virol. 2002;76:8124–8137. doi: 10.1128/JVI.76.16.8124-8137.2002. PubMed DOI PMC
Jung J., Hwang S.G., Chwae Y.J., Park S., Shin H.J., Kim K. Phosphoacceptors threonine 162 and serines 170 and 178 within the carboxyl-terminal RRRS/T motif of the hepatitis B virus core protein make multiple contributions to hepatitis B virus replication. J. Virol. 2014;88:8754–8767. doi: 10.1128/JVI.01343-14. PubMed DOI PMC
Melegari M., Wolf S.K., Schneider R.J. Hepatitis B virus DNA replication is coordinated by core protein serine phosphorylation and HBx expression. J. Virol. 2005;79:9810–9820. doi: 10.1128/JVI.79.15.9810-9820.2005. PubMed DOI PMC
Heger-Stevic J., Zimmermann P., Lecoq L., Bottcher B., Nassal M. Hepatitis B virus core protein phosphorylation: Identification of the SRPK1 target sites and impact of their occupancy on RNA binding and capsid structure. PLoS Pathog. 2018;14:e1007488. doi: 10.1371/journal.ppat.1007488. PubMed DOI PMC
Ludgate L., Liu K., Luckenbaugh L., Streck N., Eng S., Voitenleitner C., Delaney W.E.T., Hu J. Cell-Free Hepatitis B Virus Capsid Assembly Dependent on the Core Protein C-Terminal Domain and Regulated by Phosphorylation. J. Virol. 2016;90:5830–5844. doi: 10.1128/JVI.00394-16. PubMed DOI PMC
Yang F. Post-translational Modification Control of HBV Biological Processes. Front. Microbiol. 2018;9:2661. doi: 10.3389/fmicb.2018.02661. PubMed DOI PMC
Diab A., Foca A., Fusil F., Lahlali T., Jalaguier P., Amirache F., N’Guyen L., Isorce N., Cosset F.L., Zoulim F., et al. Polo-like-kinase 1 is a proviral host factor for hepatitis B virus replication. Hepatology. 2017;66:1750–1765. doi: 10.1002/hep.29236. PubMed DOI PMC
Langerova H., Lubyova B., Zabransky A., Hubalek M., Glendova K., Aillot L., Hodek J., Strunin D., Janovec V., Hirsch I., et al. Hepatitis B Core Protein Is Post-Translationally Modified through K29-Linked Ubiquitination. Cells. 2020;9:2547. doi: 10.3390/cells9122547. PubMed DOI PMC
Lubyova B., Hodek J., Zabransky A., Prouzova H., Hubalek M., Hirsch I., Weber J. PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core. PLoS ONE. 2017;12:e0186982. doi: 10.1371/journal.pone.0186982. PubMed DOI PMC
Lubyova B., Weber J. Posttranslational modifications of HBV core protein. Acta Virol. 2020;64:177–186. doi: 10.4149/av_2020_207. PubMed DOI
Abraham R.T. PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair. 2004;3:883–887. doi: 10.1016/j.dnarep.2004.04.002. PubMed DOI
Lovejoy C.A., Cortez D. Common mechanisms of PIKK regulation. DNA Repair. 2009;8:1004–1008. doi: 10.1016/j.dnarep.2009.04.006. PubMed DOI PMC
Smith J., Tho L.M., Xu N., Gillespie D.A. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv. Cancer Res. 2010;108:73–112. doi: 10.1016/B978-0-12-380888-2.00003-0. PubMed DOI
Awasthi P., Foiani M., Kumar A. ATM and ATR signaling at a glance. J. Cell Sci. 2015;128:4255–4262. doi: 10.1242/jcs.169730. PubMed DOI
Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R., 3rd, Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N., Lerenthal Y., et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–1166. doi: 10.1126/science.1140321. PubMed DOI
Zhao F., Hou N.B., Song T., He X., Zheng Z.R., Ma Q.J., Li L., Zhang Y.H., Zhong H. Cellular DNA repair cofactors affecting hepatitis B virus infection and replication. World J. Gastroenterol. 2008;14:5059–5065. doi: 10.3748/wjg.14.5059. PubMed DOI PMC
Zhao F., Hou N.B., Yang X.L., He X., Liu Y., Zhang Y.H., Wei C.W., Song T., Li L., Ma Q.J., et al. Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection. World J. Gastroenterol. 2008;14:6163–6170. doi: 10.3748/wjg.14.6163. PubMed DOI PMC
Kim S., Lee H.S., Ji J.H., Cho M.Y., Yoo Y.S., Park Y.Y., Cha H.J., Lee Y., Kim Y., Cho H. Hepatitis B virus X protein activates the ATM-Chk2 pathway and delays cell cycle progression. J. Gen. Virol. 2015;96:2242–2251. doi: 10.1099/vir.0.000150. PubMed DOI
Kostyusheva A., Brezgin S., Bayurova E., Gordeychuk I., Isaguliants M., Goptar I., Urusov F., Nikiforova A., Volchkova E., Kostyushev D., et al. ATM and ATR Expression Potentiates HBV Replication and Contributes to Reactivation of HBV Infection upon DNA Damage. Viruses. 2019;11:997. doi: 10.3390/v11110997. PubMed DOI PMC
Luo J., Luckenbaugh L., Hu H., Yan Z., Gao L., Hu J. Involvement of Host ATR-CHK1 Pathway in Hepatitis B Virus Covalently Closed Circular DNA Formation. MBio. 2020;11:e03423-19. doi: 10.1128/mBio.03423-19. PubMed DOI PMC
Bartek J., Lukas J. DNA repair: Damage alert. Nature. 2003;421:486–488. doi: 10.1038/421486a. PubMed DOI
Chaudhary P., Sharma R., Sahu M., Vishwanatha J.K., Awasthi S., Awasthi Y.C. 4-Hydroxynonenal induces G2/M phase cell cycle arrest by activation of the ataxia telangiectasia mutated and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) signaling pathway. J. Biol. Chem. 2013;288:20532–20546. doi: 10.1074/jbc.M113.467662. PubMed DOI PMC
Everett R.D. Interactions between DNA viruses, ND10 and the DNA damage response. Cell Microbiol. 2006;8:365–374. doi: 10.1111/j.1462-5822.2005.00677.x. PubMed DOI
Lilley C.E., Weitzman M.D. Keeping viruses in Chk: DNA damage signaling puts the brakes on transformation. Cell Host Microbe. 2010;8:464–466. doi: 10.1016/j.chom.2010.11.010. PubMed DOI
Weitzman M.D., Fradet-Turcotte A. Virus DNA Replication and the Host DNA Damage Response. Annu. Rev. Virol. 2018;5:141–164. doi: 10.1146/annurev-virology-092917-043534. PubMed DOI PMC
Pancholi N.J., Price A.M., Weitzman M.D. Take your PIKK: Tumour viruses and DNA damage response pathways. Philos. Trans. R Soc. Lond B Biol. Sci. 2017;372:20160269. doi: 10.1098/rstb.2016.0269. PubMed DOI PMC
Xi J., Luckenbaugh L., Hu J. Multiple roles of PP2A binding motif in hepatitis B virus core linker and PP2A in regulating core phosphorylation state and viral replication. PLoS Pathog. 2021;17:e1009230. doi: 10.1371/journal.ppat.1009230. PubMed DOI PMC
Basagoudanavar S.H., Perlman D.H., Hu J. Regulation of hepadnavirus reverse transcription by dynamic nucleocapsid phosphorylation. J. Virol. 2007;81:1641–1649. doi: 10.1128/JVI.01671-06. PubMed DOI PMC
Gazina E.V., Fielding J.E., Lin B., Anderson D.A. Core protein phosphorylation modulates pregenomic RNA encapsidation to different extents in human and duck hepatitis B viruses. J. Virol. 2000;74:4721–4728. doi: 10.1128/jvi.74.10.4721-4728.2000. PubMed DOI PMC
Lewellyn E.B., Loeb D.D. The arginine clusters of the carboxy-terminal domain of the core protein of hepatitis B virus make pleiotropic contributions to genome replication. J. Virol. 2011;85:1298–1309. doi: 10.1128/JVI.01957-10. PubMed DOI PMC
Kock J., Nassal M., Deres K., Blum H.E., von Weizsacker F. Hepatitis B virus nucleocapsids formed by carboxy-terminally mutated core proteins contain spliced viral genomes but lack full-size DNA. J. Virol. 2004;78:13812–13818. doi: 10.1128/JVI.78.24.13812-13818.2004. PubMed DOI PMC
Le Pogam S., Chua P.K., Newman M., Shih C. Exposure of RNA templates and encapsidation of spliced viral RNA are influenced by the arginine-rich domain of human hepatitis B virus core antigen (HBcAg 165–173) J. Virol. 2005;79:1871–1887. doi: 10.1128/JVI.79.3.1871-1887.2005. PubMed DOI PMC
Newman M., Chua P.K., Tang F.M., Su P.Y., Shih C. Testing an electrostatic interaction hypothesis of hepatitis B virus capsid stability by using an in vitro capsid disassembly/reassembly system. J. Virol. 2009;83:10616–10626. doi: 10.1128/JVI.00749-09. PubMed DOI PMC
Chua P.K., Tang F.M., Huang J.Y., Suen C.S., Shih C. Testing the balanced electrostatic interaction hypothesis of hepatitis B virus DNA synthesis by using an in vivo charge rebalance approach. J. Virol. 2010;84:2340–2351. doi: 10.1128/JVI.01666-09. PubMed DOI PMC
Hatton T., Zhou S., Standring D.N. RNA- and DNA-binding activities in hepatitis B virus capsid protein: A model for their roles in viral replication. J. Virol. 1992;66:5232–5241. doi: 10.1128/jvi.66.9.5232-5241.1992. PubMed DOI PMC
Cui X., Luckenbaugh L., Bruss V., Hu J. Alteration of Mature Nucleocapsid and Enhancement of Covalently Closed Circular DNA Formation by Hepatitis B Virus Core Mutants Defective in Complete-Virion Formation. J. Virol. 2015;89:10064–10072. doi: 10.1128/JVI.01481-15. PubMed DOI PMC
Hu Z., Ban H., Zheng H., Liu M., Chang J., Guo J.T. Protein phosphatase 1 catalyzes HBV core protein dephosphorylation and is co-packaged with viral pregenomic RNA into nucleocapsids. PLoS Pathog. 2020;16:e1008669. doi: 10.1371/journal.ppat.1008669. PubMed DOI PMC
Ludgate L., Ning X., Nguyen D.H., Adams C., Mentzer L., Hu J. Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids. J. Virol. 2012;86:12237–12250. doi: 10.1128/JVI.01218-12. PubMed DOI PMC
Luo J., Xi J., Gao L., Hu J. Role of Hepatitis B virus capsid phosphorylation in nucleocapsid disassembly and covalently closed circular DNA formation. PLoS Pathog. 2020;16:e1008459. doi: 10.1371/journal.ppat.1008459. PubMed DOI PMC
Okabe M., Enomoto M., Maeda H., Kuroki K., Ohtsuki K. Biochemical characterization of suramin as a selective inhibitor for the PKA-mediated phosphorylation of HBV core protein in vitro. Biol. Pharm. Bull. 2006;29:1810–1814. doi: 10.1248/bpb.29.1810. PubMed DOI
Wittkop L., Schwarz A., Cassany A., Grun-Bernhard S., Delaleau M., Rabe B., Cazenave C., Gerlich W., Glebe D., Kann M. Inhibition of protein kinase C phosphorylation of hepatitis B virus capsids inhibits virion formation and causes intracellular capsid accumulation. Cell Microbiol. 2010;12:962–975. doi: 10.1111/j.1462-5822.2010.01444.x. PubMed DOI
Barlow C., Ribaut-Barassin C., Zwingman T.A., Pope A.J., Brown K.D., Owens J.W., Larson D., Harrington E.A., Haeberle A.M., Mariani J., et al. ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc. Natl. Acad. Sci. USA. 2000;97:871–876. doi: 10.1073/pnas.97.2.871. PubMed DOI PMC
Lim D.S., Kirsch D.G., Canman C.E., Ahn J.H., Ziv Y., Newman L.S., Darnell R.B., Shiloh Y., Kastan M.B. ATM binds to beta-adaptin in cytoplasmic vesicles. Proc. Natl. Acad. Sci. USA. 1998;95:10146–10151. doi: 10.1073/pnas.95.17.10146. PubMed DOI PMC
Oka A., Takashima S. Expression of the ataxia-telangiectasia gene (ATM) product in human cerebellar neurons during development. Neurosci. Lett. 1998;252:195–198. doi: 10.1016/S0304-3940(98)00576-X. PubMed DOI
Watters D., Kedar P., Spring K., Bjorkman J., Chen P., Gatei M., Birrell G., Garrone B., Srinivasa P., Crane D.I., et al. Localization of a portion of extranuclear ATM to peroxisomes. J. Biol. Chem. 1999;274:34277–34282. doi: 10.1074/jbc.274.48.34277. PubMed DOI
Guo Z., Kozlov S., Lavin M.F., Person M.D., Paull T.T. ATM activation by oxidative stress. Science. 2010;330:517–521. doi: 10.1126/science.1192912. PubMed DOI
Stagni V., Ferri A., Cirotti C., Barila D. ATM Kinase-Dependent Regulation of Autophagy: A Key Player in Senescence? Front Cell Dev. Biol. 2020;8:599048. doi: 10.3389/fcell.2020.599048. PubMed DOI PMC
Fu X., Wan S., Lyu Y.L., Liu L.F., Qi H. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS ONE. 2008;3:e2009. doi: 10.1371/journal.pone.0002009. PubMed DOI PMC
Tanaka T., Halicka H.D., Traganos F., Seiter K., Darzynkiewicz Z. Induction of ATM activation, histone H2AX phosphorylation and apoptosis by etoposide: Relation to cell cycle phase. Cell Cycle. 2007;6:371–376. doi: 10.4161/cc.6.3.3835. PubMed DOI
Zhang A., Lyu Y.L., Lin C.P., Zhou N., Azarova A.M., Wood L.M., Liu L.F. A protease pathway for the repair of topoisomerase II-DNA covalent complexes. J. Biol. Chem. 2006;281:35997–36003. doi: 10.1074/jbc.M604149200. PubMed DOI
Slagle B.L., Andrisani O.M., Bouchard M.J., Lee C.G., Ou J.H., Siddiqui A. Technical standards for hepatitis B virus X protein (HBx) research. Hepatology. 2015;61:1416–1424. doi: 10.1002/hep.27360. PubMed DOI PMC
Aleem A., Al Amoudi S., Al-Mashhadani S., Siddiqui N. Haemophagocytic syndrome associated with hepatitis-B virus infection responding to etoposide. Clin. Lab. Haematol. 2005;27:395–398. doi: 10.1111/j.1365-2257.2005.00728.x. PubMed DOI
Cheng J.C., Liu M.C., Tsai S.Y., Fang W.T., Jer-Min Jian J., Sung J.L. Unexpectedly frequent hepatitis B reactivation by chemoradiation in postgastrectomy patients. Cancer. 2004;101:2126–2133. doi: 10.1002/cncr.20591. PubMed DOI
Zaman S., Melia W., Johnson P., White Y., Williams R. Effect of cytotoxic chemotherapy on hepatitis B viral markers in patients with hepatocellular carcinoma. Clin. Oncol. 1984;10:247–252. PubMed
Niitsu N., Hagiwara Y., Tanae K., Kohri M., Takahashi N. Prospective analysis of hepatitis B virus reactivation in patients with diffuse large B-cell lymphoma after rituximab combination chemotherapy. J. Clin. Oncol. 2010;28:5097–5100. doi: 10.1200/JCO.2010.29.7531. PubMed DOI
Faggioli P., De Paschale M., Tocci A., Luoni M., Fava S., De Paoli A., Tosi A., Cassi E. Acute hepatic toxicity during cyclic chemotherapy in non Hodgkin’s lymphoma. Haematologica. 1997;82:38–42. PubMed
Dansako H., Ueda Y., Satoh S., Kato N. Extracellular vesicles activate ATM-Chk2 signaling pathway through the intercellular transfer of mitochondrial DNA in HBV-infected human hepatocytes. FASEB J. 2021;35:e21680. doi: 10.1096/fj.202002678R. PubMed DOI