A large arteriovenous fistula steals a considerable part of systemic blood flow during veno-arterial extracorporeal circulation support in a porcine model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37497434
PubMed Central
PMC10366375
DOI
10.3389/fphys.2023.1109524
PII: 1109524
Knihovny.cz E-zdroje
- Klíčová slova
- animal model, arteriovenous fistula, cerebral blood flow, cerebral tissue oxygenation, veno-arterial extracorporeal membrane oxygenation,
- Publikační typ
- časopisecké články MeSH
Background: Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is one of the most frequently used mechanical circulatory support devices. Distribution of extracorporeal membrane oxygenation flow depends (similarly as the cardiac output distribution) on regional vascular resistance. Arteriovenous fistulas (AVFs), used frequently as hemodialysis access, represent a low-resistant circuit which steals part of the systemic perfusion. We tested the hypothesis that the presence of a large Arteriovenous fistulas significantly changes organ perfusion during a partial and a full Veno-arterial extracorporeal membrane oxygenation support. Methods: The protocol was performed on domestic female pigs held under general anesthesia. Cannulas for Veno-arterial extracorporeal membrane oxygenation were inserted into femoral artery and vein. The Arteriovenous fistulas was created using another two high-diameter extracorporeal membrane oxygenation cannulas inserted in the contralateral femoral artery and vein. Catheters, flow probes, flow wires and other sensors were placed for continuous monitoring of haemodynamics and organ perfusion. A stepwise increase in extracorporeal membrane oxygenation flow was considered under beating heart and ventricular fibrillation (VF) with closed and opened Arteriovenous fistulas. Results: Opening of a large Arteriovenous fistulas (blood flow ranging from 1.1 to 2.2 L/min) resulted in decrease of effective systemic blood flow by 17%-30% (p < 0.01 for all steps). This led to a significant decrease of carotid artery flow (ranging from 13% to 25% after Arteriovenous fistulas opening) following VF and under partial extracorporeal membrane oxygenation support. Cerebral tissue oxygenation measured by near infrared spectroscopy also decreased significantly in all steps. These changes occurred even with maintained perfusion pressure. Changes in coronary artery flow were driven by changes in the native cardiac output. Conclusion: A large arteriovenous fistula can completely counteract Veno-arterial extracorporeal membrane oxygenation support unless maximal extracorporeal membrane oxygenation flow is applied. Cerebral blood flow and oxygenation are mainly compromised by the effect of the Arteriovenous fistulas. These effects could influence brain function in patients with Arteriovenous fistulas on Veno-arterial extracorporeal membrane oxygenation.
Zobrazit více v PubMed
Amerling R., Ronco C., Kuhlman M., Winchester J. F. (2011). Arteriovenous fistula toxicity. Blood Purif. 31, 113–120. 10.1159/000322695 PubMed DOI
Armstead W. M. (2016). Cerebral blood flow autoregulation and dysautoregulation. Anesthesiol. Clin. 34, 465–477. 10.1016/j.anclin.2016.04.002 PubMed DOI PMC
Basile C., Lomonte C. (2018). The complex relationship among arteriovenous access, heart, and circulation. Semin. Dial. 31, 15–20. 10.1111/sdi.12652 PubMed DOI
Chung M., Shiloh A. L., Carlese A. (2014). Monitoring of the adult patient on venoarterial extracorporeal membrane oxygenation. ScientificWorldJournal 2014, 393258. 10.1155/2014/393258 PubMed DOI PMC
Distelmaier K., Wiedemann D., Lampichler K., Toth D., Galli L., Haberl T., et al. (2020). Interdependence of VA-ECMO output, pulmonary congestion and outcome after cardiac surgery. Eur. J. Intern Med. 81, 67–70. 10.1016/j.ejim.2020.07.014 PubMed DOI
Guyton A. C., Sagawa K. (1961). Compensations of cardiac output and other circulatory functions in areflex dogs with large A-V fistulas. Am. J. Physiol. 200, 1157–1163. 10.1152/ajplegacy.1961.200.6.1157 PubMed DOI
Hala P., Mlček M., Ošťádal P., Popková M., Janák D., Bouček T., et al. (2020). Increasing venoarterial extracorporeal membrane oxygenation flow puts higher demands on left ventricular work in a porcine model of chronic heart failure. J. Transl. Med. 18, 75. 10.1186/s12967-020-02250-x PubMed DOI PMC
Johnson G., Blythe W. B. (1970). Hemodynamic effects of arteriovenous shunts used for hemodialysis. Ann. Surg. 171, 715–723. 10.1097/00000658-197005000-00010 PubMed DOI PMC
Kato J., Seo T., Ando H., Takagi H., Ito T. (1996). Coronary arterial perfusion during venoarterial extracorporeal membrane oxygenation. J. Thorac. Cardiovasc Surg. 111, 630–636. 10.1016/s0022-5223(96)70315-x PubMed DOI
Kazmi S. O., Sivakumar S., Karakitsos D., Alharthy A., Lazaridis C. (2018). Cerebral pathophysiology in extracorporeal membrane oxygenation: Pitfalls in daily clinical management. Crit. Care Res. Pract. 2018, 3237810. 10.1155/2018/3237810 PubMed DOI PMC
Kovarova L., Valerianova A., Michna M., Malik J. (2021). Short-term manual compression of hemodialysis fistula leads to a rise in cerebral oxygenation. J. Vasc. Access 22, 90–93. 10.1177/1129729820924561 PubMed DOI
Malik J., Valerianova A., Tuka V., Trachta P., Bednarova V., Hruskova Z., et al. (2021). The effect of high-flow arteriovenous fistulas on systemic haemodynamics and brain oxygenation. Esc. Heart Fail 8, 2165–2171. 10.1002/ehf2.13305 PubMed DOI PMC
McDonagh T. A., Metra M., Adamo M., Gardner R. S., Baumbach A., Böhm M., et al. (2021). 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726. 10.1093/eurheartj/ehab368 PubMed DOI
Nickerson J. L., Elkin D. C., Warren J. V. (1951). The effect of temporary occlusion of arteriovenous fistulas on heart rate, stroke volume, and cardiac output. J. Clin. Invest. 30, 215–219. 10.1172/JCI102435 PubMed DOI PMC
Petrak J., Havlenova T., Krijt M., Behounek M., Franekova J., Cervenka L., et al. (2019). Myocardial iron homeostasis and hepcidin expression in a rat model of heart failure at different levels of dietary iron intake. Biochim. Biophys. Acta Gen. Subj. 1863 (4), 703–713. 10.1016/j.bbagen.2019.01.010 PubMed DOI
Popkova M., Kuriščák E., Hála P., Janák D., Tejkl L., Bělohlávek J., et al. (2020). Increasing veno-arterial extracorporeal membrane oxygenation flow reduces electrical impedance of the lung regions in porcine acute heart failure. Physiol. Res. 69, 609–620. 10.33549/physiolres.934429 PubMed DOI PMC
Reddy Y. N. V., Melenovsky V., Redfield M. M., Nishimura R. A., Borlaug B. A. (2016). High-output heart failure: A 15-year experience. J. Am. Coll. Cardiol. 68, 473–482. 10.1016/j.jacc.2016.05.043 PubMed DOI
Short B. L., Walker L. K., Bender K. S., Traystman R. J. (1993). Impairment of cerebral autoregulation during extracorporeal membrane oxygenation in newborn lambs. Pediatr. Res. 33, 289–294. 10.1203/00006450-199303000-00018 PubMed DOI
Smith H. G., Whittlesey G. C., Kundu S. K., Salley S. O., Kuhns L. R., Chang C. H., et al. (1989). Regional blood flow during extracorporeal membrane oxygenation in lambs. ASAIO Trans. 35, 657–660. 10.1097/00002480-198907000-00159 PubMed DOI
Soar J., Böttiger B. W., Carli P., Couper K., Deakin C. D., Djärv T., et al. (2021). European resuscitation council guidelines 2021: Adult advanced life support. Resuscitation 161, 115–151. 10.1016/j.resuscitation.2021.02.010 PubMed DOI
Vahdatpour C., Collins D., Goldberg S. (2019). Cardiogenic shock. J. Am. Heart Assoc. 8, e011991. 10.1161/JAHA.119.011991 PubMed DOI PMC
Valerianova A., Mlcek M., Grus T., Malik J., Kittnar O. (2022). New porcine model of arteriovenous fistula documents increased coronary blood flow at the cost of brain perfusion. Front. Physiol. 13, 881658. 10.3389/fphys.2022.881658 PubMed DOI PMC