Structural basis of prostate-specific membrane antigen recognition by the A9g RNA aptamer
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM063732
NIGMS NIH HHS - United States
R01 GM109980
NIGMS NIH HHS - United States
R01 GM117059
NIGMS NIH HHS - United States
R35 GM134919
NIGMS NIH HHS - United States
PubMed
32525981
PubMed Central
PMC7641732
DOI
10.1093/nar/gkaa494
PII: 5856120
Knihovny.cz E-zdroje
- MeSH
- antigeny povrchové chemie MeSH
- aptamery nukleotidové chemie MeSH
- buňky PC-3 MeSH
- glutamátkarboxypeptidasa II chemie MeSH
- HEK293 buňky MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- ligandy MeSH
- molekulární struktura MeSH
- nádorové biomarkery chemie MeSH
- nádory prostaty metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- A9g RNA aptamer MeSH Prohlížeč
- antigeny povrchové MeSH
- aptamery nukleotidové MeSH
- FOLH1 protein, human MeSH Prohlížeč
- glutamátkarboxypeptidasa II MeSH
- ligandy MeSH
- nádorové biomarkery MeSH
Prostate-specific membrane antigen (PSMA) is a well-characterized tumor marker associated with prostate cancer and neovasculature of most solid tumors. PSMA-specific ligands are thus being developed to deliver imaging or therapeutic agents to cancer cells. Here, we report on a crystal structure of human PSMA in complex with A9g, a 43-bp PSMA-specific RNA aptamer, that was determined to the 2.2 Å resolution limit. The analysis of the PSMA/aptamer interface allows for identification of key interactions critical for nanomolar binding affinity and high selectivity of A9g for human PSMA. Combined with in silico modeling, site-directed mutagenesis, inhibition experiments and cell-based assays, the structure also provides an insight into structural changes of the aptamer and PSMA upon complex formation, mechanistic explanation for inhibition of the PSMA enzymatic activity by A9g as well as its ligand-selective competition with small molecules targeting the internal pocket of the enzyme. Additionally, comparison with published protein-RNA aptamer structures pointed toward more general features governing protein-aptamer interactions. Finally, our findings can be exploited for the structure-assisted design of future A9g-based derivatives with improved binding and stability characteristics.
Dalton Cardiovascular Research Center University of Missouri Columbia MO USA
Department of Internal Medicine University of Iowa Iowa City IA 52242 USA
Department of Physics and Astronomy University of Missouri Columbia MO USA
Zobrazit více v PubMed
Kinoshita Y., Kuratsukuri K., Landas S., Imaida K., Rovito P.M. Jr, Wang C.Y., Haas G.P.. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J. Surg. 2006; 30:628–636. PubMed
Silver D.A., Pellicer I., Fair W.R., Heston W.D., Cordon-Cardo C.. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 1997; 3:81–85. PubMed
Sokoloff R.L., Norton K.C., Gasior C.L., Marker K.M., Grauer L.S.. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid and urine. Prostate. 2000; 43:150–157. PubMed
Mhawech-Fauceglia P., Zhang S., Terracciano L., Sauter G., Chadhuri A., Herrmann F.R., Penetrante R.. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using mutiple tumour tissue microarray technique. Histopathology. 2007; 50:472–483. PubMed
Lopes A.D., Davis W.L., Rosenstraus M.J., Uveges A.J., Gilman S.C.. Immunohistochemical and pharmacokinetic characterization of the site-specific immunoconjugate CYT-356 derived from antiprostate monoclonal antibody 7E11-C5. Cancer Res. 1990; 50:6423–6429. PubMed
Sacha P., Zamecnik J., Barinka C., Hlouchova K., Vicha A., Mlcochova P., Hilgert I., Eckschlager T., Konvalinka J.. Expression of glutamate carboxypeptidase II in human brain. Neuroscience. 2007; 144:1361–1372. PubMed
Rovenska M., Hlouchova K., Sacha P., Mlcochova P., Horak V., Zamecnik J., Barinka C., Konvalinka J.. Tissue expression and enzymologic characterization of human prostate specific membrane antigen and its rat and pig orthologs. Prostate. 2008; 68:171–182. PubMed
Hupe M.C., Philippi C., Roth D., Kumpers C., Ribbat-Idel J., Becker F., Joerg V., Duensing S., Lubczyk V.H., Kirfel J. et al. .. Expression of Prostate-Specific Membrane Antigen (PSMA) on biopsies is an independent risk stratifier of prostate cancer patients at time of initial diagnosis. Front. Oncol. 2018; 8:623. PubMed PMC
Heidenreich A., Bastian P.J., Bellmunt J., Bolla M., Joniau S., van der Kwast T., Mason M., Matveev V., Wiegel T., Zattoni F. et al. .. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative Intent-Update 2013. Eur. Urol. 2014; 65:124–137. PubMed
Chang S.S., Reuter V.E., Heston W.D., Bander N.H., Grauer L.S., Gaudin P.B.. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999; 59:3192–3198. PubMed
Milowsky M.I., Nanus D.M., Kostakoglu L., Sheehan C.E., Vallabhajosula S., Goldsmith S.J., Ross J.S., Bander N.H.. Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors. J. Clin. Oncol. 2007; 25:540–547. PubMed
Pandit-Taskar N., O’Donoghue J.A., Divgi C.R., Wills E.A., Schwartz L., Gonen M., Smith-Jones P., Bander N.H., Scher H.I., Larson S.M. et al. .. Indium 111-labeled J591 anti-PSMA antibody for vascular targeted imaging in progressive solid tumors. EJNMMI Res. 2015; 5:28. PubMed PMC
Dassie J.P., Hernandez L.I., Thomas G.S., Long M.E., Rockey W.M., Howell C.A., Chen Y., Hernandez F.J., Liu X.Y., Wilson M.E. et al. .. Targeted inhibition of prostate cancer metastases with an RNA aptamer to prostate-specific membrane antigen. Mol. Ther. 2014; 22:1910–1922. PubMed PMC
Kaittanis C., Andreou C., Hieronymus H., Mao N.H., Foss C.A., Eiber M., Weirich G., Panchal P., Gopalan A., Zurita J. et al. .. Prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors (vol 215, pg 17, 2018). J. Exp. Med. 2018; 215:159–175. PubMed PMC
Yao V., Bacich D.J.. Prostate specific membrane antigen (PSMA) expression gives prostate cancer cells a growth advantage in a physiologically relevant folate environment in vitro. Prostate. 2006; 66:867–875. PubMed
Yao V., Berkman C.E., Choi J.K., O’Keefe D.S., Bacich D.J.. Expression of Prostate-Specific Membrane Antigen (PSMA), increases cell folate uptake and proliferation and suggests a novel role for PSMA in the uptake of the non-polyglutamated folate, folic acid. Prostate. 2010; 70:305–316. PubMed
Horoszewicz J.S., Kawinski E., Murphy G.P.. Monoclonal-antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic-cancer patients. Anticancer Res. 1987; 7:927–936. PubMed
Murphy G.P., Maguire R.T., Rogers B., Partin A.W., Nelp W.B., Troychak M.J., Ragde H., Kenny G.M., Barren R.J. 3rd, Bowes V.A. et al. .. Comparison of serum PSMA, PSA levels with results of Cytogen-356 ProstaScint scanning in prostatic cancer patients. Prostate. 1997; 33:281–285. PubMed
Ellis R.J., Kaminsky D.A., Zhou E.H., Fu P., Chen W.D., Brelin A., Faulhaber P.F., Bodner D.. Ten-year outcomes: the clinical utility of single photon emission computed tomography/computed tomography capromab pendetide (Prostascint) in a cohort diagnosed with localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011; 81:29–34. PubMed
Tykvart J., Navratil V., Sedlak F., Corey E., Colombatti M., Fracasso G., Koukolik F., Barinka C., Sacha P., Konvalinka J.. Comparative analysis of monoclonal antibodies against prostate-specific membrane antigen (PSMA). Prostate. 2014; 74:1674–1690. PubMed
Novakova Z., Foss C.A., Copeland B.T., Morath V., Baranova P., Havlinova B., Skerra A., Pomper M.G., Barinka C.. Novel monoclonal antibodies recognizing human prostate-specific membrane antigen (PSMA) as research and theranostic tools. Prostate. 2017; 77:749–764. PubMed PMC
Flynn N., Ranjan A., Ramsey J.D.. Intracellular delivery of glucose oxidase for enhanced cytotoxicity toward PSMA-expressing prostate cancer cells. Macromol. Biosci. 2019; 19:e1900183. PubMed
Wester H.J., Schottelius M.. PSMA-targeted radiopharmaceuticals for imaging and therapy. Semin. Nucl. Med. 2019; 49:302–312. PubMed
Michalska M., Schultze-Seemann S., Kuckuck I., Wolf P.. In vitro evaluation of Humanized/De-immunized Anti-PSMA immunotoxins for the treatment of prostate cancer. Anticancer Res. 2018; 38:61–69. PubMed
Barinka C., Ptacek J., Richter A., Novakova Z., Morath V., Skerra A.. Selection and characterization of anticalins targeting human prostate-specific membrane antigen (PSMA). Protein Eng. Des. Sel. 2016; 29:105–115. PubMed
Neburkova J., Sedlak F., Suchanova J.Z., Kostka L., Sacha P., Subr V., Etrych T., Simon P., Barinkova J., Krystufek R. et al. .. Inhibitor-GCPII Interaction: Selective and robust system for targeting cancer cells with structurally diverse nanoparticles. Mol. Pharm. 2018; 15:2932–2945. PubMed
Robinson M.B., Blakely R.D., Couto R., Coyle J.T.. Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate - identification and characterization of a novel N-acetylated alpha-linked acidic dipeptidase activity from rat-brain. J. Biol. Chem. 1987; 262:14498–14506. PubMed
Jackson P.F., Cole D.C., Slusher B.S., Stetz S.L., Ross L.E., Donzanti B.A., Trainor D.A.. Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated alpha-linked acidic dipeptidase. J. Med. Chem. 1996; 39:619–622. PubMed
Wustemann T., Haberkorn U., Babich J., Mier W.. Targeting prostate cancer: prostate-specific membrane antigen based diagnosis and therapy. Med. Res. Rev. 2019; 39:40–69. PubMed
Wang X.N., Huang S.S., Heston W.D.W., Guo H., Wang B.C., Basilion J.P.. Development of targeted Near-Infrared imaging agents for prostate cancer. Mol. Cancer Ther. 2014; 13:2595–2606. PubMed PMC
Hlouchova K., Barinka C., Klusak V., Sacha P., Mlcochova P., Majer P., Rulisek L., Konvalinka J.. Biochemical characterization of human glutamate carboxypeptidase III. J. Neurochem. 2007; 101:682–696. PubMed
Hlouchova K., Barinka C., Konvalinka J., Lubkowski J.. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J. 2009; 276:4448–4462. PubMed
Bacich D.J., Ramadan E., O’Keefe D.S., Bukhari N., Wegorzewska I., Ojeifo O., Olszewski R., Wrenn C.C., Bzdega T., Wroblewska B. et al. .. Deletion of the glutamate carboxypeptidase II gene in mice reveals a second enzyme activity that hydrolyzes N-acetylaspartylglutamate. J. Neurochem. 2002; 83:20–29. PubMed
Connell G.J., Illangesekare M., Yarus M.. 3 small ribooligonucleotides with specific arginine sites. Biochemistry. 1993; 32:5497–5502. PubMed
Battig M.R., Wang Y.. Natural and Synthetic Biomedical Polymers. 2014; Elsevier; 287–299.
Machtel P., Bakowska-Zywicka K., Zywicki M.. Emerging applications of riboswitches - from antibacterial targets to molecular tools. J. Appl. Genet. 2016; 57:531–541. PubMed PMC
Wu X., Chen J., Wu M., Zhao J.X.J.. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics. 2015; 5:322–344. PubMed PMC
Iliuk A.B., Hu L.H., Tao W.A.. Aptamer in bioanalytical applications. Anal. Chem. 2011; 83:4440–4452. PubMed PMC
Zhou J.H., Rossi J.. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 2017; 16:181–202. PubMed PMC
Keefe A.D., Pai S., Ellington A.. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010; 9:537–550. PubMed PMC
Lupold S.E., Hicke B.J., Lin Y., Coffey D.S.. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 2002; 62:4029–4033. PubMed
Chu T.C., Twu K.Y., Ellington A.D., Levy M.. Aptamer mediated siRNA delivery. Nucleic Acids Res. 2006; 34:e73. PubMed PMC
Kim D., Jeong Y.Y., Jon S.. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined ct imaging and therapy of prostate cancer. ACS Nano. 2010; 4:3689–3696. PubMed
Baek S.E., Lee K.H., Park Y.S., Oh D.K., Oh S., Kim K.S., Kim D.E.. RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. J. Control. Release. 2014; 196:234–242. PubMed
Rockey W.M., Hernandez F.J., Huang S.Y., Cao S., Howell C.A., Thomas G.S., Liu X.Y., Lapteva N., Spencer D.M., McNamara J.O. et al. .. Rational Truncation of an RNA aptamer to Prostate-Specific membrane antigen using computational structural modeling. Nucleic Acid Ther. 2011; 21:299–314. PubMed PMC
Leek J., Lench N., Maraj B., Bailey A., Carr I.M., Andersen S., Cross J., Whelan P., Maclennan K.A., Meredith D.M. et al. .. Prostate-specific membrane antigen - evidence for the existence of a 2nd related human gene. Br. J. Cancer. 1995; 72:583–588. PubMed PMC
Kaighn M.E., Narayan K.S., Ohnuki Y., Lechner J.F., Jones L.W.. Establishment and characterization of a human prostatic-carcinoma cell-line (Pc-3). Invest. Urol. 1979; 17:16–23. PubMed
Knedlik T., Vorlova B., Navratil V., Tykvart J., Sedlak F., Vaculin S., Franek M., Sacha P., Konvalinka J.. Mouse glutamate carboxypeptidaseII (GCPII) has a similar enzyme activity and inhibition profile but a different tissue distribution to human GCPII. FEBS Open Biol. 2017; 7:1362–1378. PubMed PMC
Tykvart J., Sacha P., Barinka C., Knedlik T., Starkova J., Lubkowski J., Konvalinka J.. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II. Protein Express. Purif. 2012; 82:106–115. PubMed PMC
Waterman D.G., Winter G., Parkhurst J.M., Fuentes-Montero L., Hattne J., Brewster A., Sauter N.K., Evans G.. The DIALS framework for integration software. CCP4 Newslett. Protein Crystallogr. 2013; 49:16–19.
Winter G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Cryst. 2010; 43:186–190.
McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J.. Phaser crystallographic software. J. Appl. Crystallogr. 2007; 40:658–674. PubMed PMC
Barinka C., Starkova J., Konvalinka J., Lubkowski J.. A high-resolution structure of ligand-free human glutamate carboxypeptidase II. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2007; 63:150–153. PubMed PMC
Keating K.S., Pyle A.M.. RCrane: semi-automated RNA model building. Acta Crystallogr. D. Biol. Crystallogr. 2012; 68:985–995. PubMed PMC
Emsley P., Lohkamp B., Scott W.G., Cowtan K.. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 2010; 66:486–501. PubMed PMC
Chen V.B., Arendall W.B. 3rd, Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C.. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 2010; 66:12–21. PubMed PMC
Nakajima R., Novakova Z., Tueckmantel W., Motlova L., Barinka C., Kozikowski A.P.. 2-Aminoadipic acid-C(O)-glutamate based prostate-specific membrane antigen ligands for potential use as theranostics. ACS Med. Chem. Lett. 2018; 9:1099–1104. PubMed PMC
Barinka C., Rinnova M., Sacha P., Rojas C., Majer P., Slusher B.S., Konvalinka J.. Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J. Neurochem. 2002; 80:477–487. PubMed
Zhang D., Chen S.J.. IsRNA: An iterative simulated reference state approach to modeling correlated interactions in RNA folding. J. Chem. Theory Comput. 2018; 14:2230–2239. PubMed PMC
Xu X., Zhao P., Chen S.J.. Vfold: a web server for RNA structure and folding thermodynamics prediction. PLoS One. 2014; 9:e107504. PubMed PMC
Boniecki M.J., Lach G., Dawson W.K., Tomala K., Lukasz P., Soltysinski T., Rother K.M., Bujnicki J.M.. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 2016; 44:e63. PubMed PMC
Das R., Karanicolas J., Baker D.. Atomic accuracy in predicting and designing noncanonical RNA structure. Nat. Methods. 2010; 7:291–294. PubMed PMC
Barinka C., Rovenska M., Mlcochova P., Hlouchova K., Plechanovova A., Majer P., Tsukamoto T., Slusher B.S., Konvalinka J., Lubkowski J.. Structural insight into the pharmacophore pocket of human glutamate carboxypeptidase II. J. Med. Chem. 2007; 50:3267–3273. PubMed
Terwilliger T.C., Grosse-Kunstleve R.W., Afonine P.V., Moriarty N.W., Adams P.D., Read R.J., Zwart P.H., Hung L.W.. Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias. Acta Crystallogr D. 2008; 64:515–524. PubMed PMC
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31:3406–3415. PubMed PMC
Bellaousov S., Reuter J.S., Seetin M.G., Mathews D.H.. RNAstructure: web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res. 2013; 41:W471–W474. PubMed PMC
Krissinel E., Henrick K.. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007; 372:774–797. PubMed
Wilcken R., Zimmermann M.O., Lange A., Joerger A.C., Boeckler F.M.. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 2013; 56:1363–1388. PubMed
Sirimulla S., Bailey J.B., Vegesna R., Narayan M.. Halogen interactions in protein-ligand complexes: implications of halogen bonding for rational drug design. J. Chem. Inf. Model. 2013; 53:2781–2791. PubMed
Mesters J.R., Barinka C., Li W., Tsukamoto T., Majer P., Slusher B.S., Konvalinka J., Hilgenfeld R.. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J. 2006; 25:1375–1384. PubMed PMC
Barinka C., Hlouchova K., Rovenska M., Majer P., Dauter M., Hin N., Ko Y.S., Tsukamoto T., Slusher B.S., Konvalinka J. et al. .. Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs. J. Mol. Biol. 2008; 376:1438–1450. PubMed PMC
Navratil M., Tykvart J., Schimer J., Pachl P., Navratil V., Rokob T.A., Hlouchova K., Rulisek L., Konvalinka J.. Comparison of human glutamate carboxypeptidases II and III reveals their divergent substrate specificities. FEBS J. 2016; 283:2528–2545. PubMed
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L. et al. .. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46:W296–W303. PubMed PMC
Ali M.H., Elsherbiny M.E., Emara M.. Updates on aptamer research. Int. J. Mol. Sci. 2019; 20:E2511. PubMed PMC
Veedu R.N. Aptamers: Tools for Nanotherapy and Molecular Imaging. 2017; Boca Raton: CRC Press.
Gebauer M., Skerra A.. Engineered protein scaffolds as Next-Generation therapeutics. Annu. Rev. Pharmacol. 2020; 60:391–415. PubMed
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E.. The Protein Data Bank. Nucleic Acids Res. 2000; 28:235–242. PubMed PMC
Long S.B., Long M.B., White R.R., Sullenger B.A.. Crystal structure of an RNA aptamer bound to thrombin. RNA. 2008; 14:2504–2512. PubMed PMC
Nomura Y., Sugiyama S., Sakamoto T., Miyakawa S., Adachi H., Takano K., Murakami S., Inoue T., Mori Y., Nakamura Y. et al. .. Conformational plasticity of RNA for target recognition as revealed by the 2.15 angstrom crystal structure of a human IgG-aptamer complex. Nucleic Acids Res. 2010; 38:7822–7829. PubMed PMC
Huang D.B., Vu D., Cassiday L.A., Zimmerman J.M., Maher L.J. 3rd, Ghosh G.. Crystal structure of NF-kappaB (p50)2 complexed to a high-affinity RNA aptamer. PNAS. 2003; 100:9268–9273. PubMed PMC
Dearborn A.D., Eren E., Watts N.R., Palmer I.W., Kaufman J.D., Steven A.C., Wingfield P.T.. Structure of an RNA aptamer that can inhibit HIV-1 by blocking Rev-cognate RNA (RRE) binding and Rev-Rev association. Structure. 2018; 26:1187–1195. PubMed PMC
Ghosh G., van Duyne G., Ghosh S., Sigler P.B.. Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature. 1995; 373:303–310. PubMed
DiMattia M.A., Watts N.R., Stahl S.J., Rader C., Wingfield P.T., Stuart D.I., Steven A.C., Grimes J.M.. Implications of the HIV-1 Rev dimer structure at 3.2 A resolution for multimeric binding to the Rev response element. PNAS. 2010; 107:5810–5814. PubMed PMC
Grau F.C., Jaeger J., Groher F., Suess B., Muller Y.A.. The complex formed between a synthetic RNA aptamer and the transcription repressor TetR is a structural and functional twin of the operator DNA-TetR regulator complex. Nucleic Acids Res. 2020; 48:3366–3378. PubMed PMC
Gunaratne R., Kumar S., Frederiksen J.W., Stayrook S., Lohrmann J.L., Perry K., Bompiani K.M., Chabata C.V., Thalji N.K., Ho M.D. et al. .. Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass. Nat. Biotechnol. 2018; 36:606–613. PubMed PMC
Zok T., Antczak M., Zurkowski M., Popenda M., Blazewicz J., Adamiak R.W., Szachniuk M.. RNApdbee 2.0: multifunctional tool for RNA structure annotation. Nucleic Acids Res. 2018; 46:W30–W35. PubMed PMC