2-Aminoadipic Acid-C(O)-Glutamate Based Prostate-Specific Membrane Antigen Ligands for Potential Use as Theranostics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30429952
PubMed Central
PMC6231180
DOI
10.1021/acsmedchemlett.8b00318
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The design and synthesis of prostate specific membrane antigen (PSMA) ligands derived from 2-aminoadipic acid, a building block that has not previously been used to construct PSMA ligands, are reported. The effects of both the linker length and of an N-substituent of our PSMA ligands were probed, and X-ray structures of five of these ligands bound to PSMA were obtained. Among the ligands disclosed herein, 13b showed the highest inhibitory activity for PSMA. As ligand 13b can readily be radiolabeled since its fluorine atom is adjacent to the nitrogen atom of its pyridine ring, the use of this and related compounds as theranostics can be pursued.
Zobrazit více v PubMed
Siegel R. L.; Miller K. D.; Jemal A. Cancer Statistics, 2016. Ca-Cancer J. Clin. 2016, 66 (1), 7–30. 10.3322/caac.21332. PubMed DOI
Wilson L. S.; Tesoro R.; Elkin E. P.; Sadetsky N.; Broering J. M.; Latini D. M.; DuChane J.; Mody R. R.; Carroll P. R. Cumulative Cost Pattern Comparison of Prostate Cancer Treatments. Cancer 2007, 109 (3), 518–527. 10.1002/cncr.22433. PubMed DOI
O’Keefe D. S.; Bacich D. J.; Heston W. D. Comparative Analysis of Prostate-Specific Membrane Antigen (PSMA) Versus a Prostate-Specific Membrane Antigen-Like Gene. Prostate 2004, 58 (2), 200–210. 10.1002/pros.10319. PubMed DOI
Wang X.; Yin L.; Rao P.; Stein R.; Harsch K. M.; Lee Z.; Heston W. D. Targeted Treatment of Prostate Cancer. J. Cell. Biochem. 2007, 102 (3), 571–579. 10.1002/jcb.21491. PubMed DOI
Ross J. S.; Sheehan C. E.; Fisher H. A.; Kaufman R. P. Jr.; Kaur P.; Gray K.; Webb I.; Gray G. S.; Mosher R.; Kallakury B. V. Correlation of Primary Tumor Prostate-Specific Membrane Antigen Expression with Disease Recurrence in Prostate Cancer. Clin. Cancer Res. 2003, 9 (17), 6357–6362. PubMed
Ghosh A.; Heston W. D. Tumor Target Prostate Specific Membrane Antigen (PSMA) and its Regulation in Prostate Cancer. J. Cell. Biochem. 2004, 91 (3), 528–539. 10.1002/jcb.10661. PubMed DOI
Mhawech-Fauceglia P.; Zhang S.; Terracciano L.; Sauter G.; Chadhuri A.; Herrmann F. R.; Penetrante R. Prostate-Specific Membrane Antigen (PSMA) Protein Expression in Normal and Neoplastic Tissues and Its Sensitivity and Specificity in Prostate Adenocarcinoma: an Immunohistochemical Study Using Mutiple Tumour Tissue Microarray Technique. Histopathology 2007, 50 (4), 472–483. 10.1111/j.1365-2559.2007.02635.x. PubMed DOI
Elsasser-Beile U.; Reischl G.; Wiehr S.; Buhler P.; Wolf P.; Alt K.; Shively J.; Judenhofer M. S.; Machulla H. J.; Pichler B. J. PET Imaging of Prostate Cancer Xenografts with a Highly Specific Antibody against the Prostate-Specific Membrane Antigen. J. Nucl. Med. 2009, 50 (4), 606–611. 10.2967/jnumed.108.058487. PubMed DOI
Henry M. D.; Wen S.; Silva M. D.; Chandra S.; Milton M.; Worland P. J. A Prostate-Specific Membrane Antigen-Targeted Monoclonal Antibody–Chemotherapeutic Conjugate Designed for the Treatment of Prostate Cancer. Cancer Res. 2004, 64 (21), 7995–8001. 10.1158/0008-5472.CAN-04-1722. PubMed DOI
Aggarwal S.; Singh P.; Topaloglu O.; Isaacs J. T.; Denmeade S. R. A Dimeric Peptide That Binds Selectively to Prostate-Specific Membrane Antigen and Inhibits Its Enzymatic Activity. Cancer Res. 2006, 66 (18), 9171–9177. 10.1158/0008-5472.CAN-06-1520. PubMed DOI
Rege K.; Patel S. J.; Megeed Z.; Yarmush M. L. Amphipathic Peptide-Based Fusion Peptides and Immunoconjugates for the Targeted Ablation of Prostate Cancer Cells. Cancer Res. 2007, 67 (13), 6368–6375. 10.1158/0008-5472.CAN-06-3658. PubMed DOI
Ni X.; Zhang Y.; Ribas J.; Chowdhury W. H.; Castanares M.; Zhang Z.; Laiho M.; DeWeese T. L.; Lupold S. E. Prostate-Targeted Radiosensitization via Aptamer-shRNA Chimeras in Human Tumor Xenografts. J. Clin. Invest. 2011, 121 (6), 2383–2390. 10.1172/JCI45109. PubMed DOI PMC
Chen Y.; Foss C. A.; Byun Y.; Nimmagadda S.; Pullambahatla M.; Fox J. J.; Castanares M.; Lupold S. E.; Babich J. W.; Mease R. C.; Pomper M. G. Radiohalogenated Prostate-Specific Membrane Antigen (PSMA)-Based Ureas as Imaging Agents for Prostate Cancer. J. Med. Chem. 2008, 51 (24), 7933–7943. 10.1021/jm801055h. PubMed DOI PMC
Barrett J. A.; Coleman R. E.; Goldsmith S. J.; Vallabhajosula S.; Petry N. A.; Cho S.; Armor T.; Stubbs J. B.; Maresca K. P.; Stabin M. G.; Joyal J. L.; Eckelman W. C.; Babich J. W. First-in-Man Evaluation of 2 High-Affinity PSMA-Avid Small Molecules for Imaging Prostate Cancer. J. Nucl. Med. 2013, 54 (3), 380–387. 10.2967/jnumed.112.111203. PubMed DOI
Kozikowski A. P.; Nan F.; Conti P.; Zhang J.; Ramadan E.; Bzdega T.; Wroblewska B.; Neale J. H.; Pshenichkin S.; Wroblewski J. T. Design of Remarkably Simple, Yet Potent Urea-Based Inhibitors of Glutamate Carboxypeptidase II (NAALADase). J. Med. Chem. 2001, 44 (3), 298–301. 10.1021/jm000406m. PubMed DOI
Lutje S.; Heskamp S.; Cornelissen A. S.; Poeppel T. D.; van den Broek S. A.; Rosenbaum-Krumme S.; Bockisch A.; Gotthardt M.; Rijpkema M.; Boerman O. C. PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status. Theranostics 2015, 5 (12), 1388–1401. 10.7150/thno.13348. PubMed DOI PMC
Rowe S. P.; Gorin M. A.; Allaf M. E.; Pienta K. J.; Tran P. T.; Pomper M. G.; Ross A. E.; Cho S. Y. PET Imaging of Prostate-Specific Membrane Antigen in Prostate Cancer: Current State of the Art and Future Challenges. Prostate Cancer Prostatic Dis. 2016, 19 (3), 223–230. 10.1038/pcan.2016.13. PubMed DOI PMC
Chen Y.; Lisok A.; Chatterjee S.; Wharram B.; Pullambhatla M.; Wang Y.; Sgouros G.; Mease R. C.; Pomper M. G. [18F]Fluoroethyl Triazole Substituted PSMA Inhibitor Exhibiting Rapid Normal Organ Clearance. Bioconjugate Chem. 2016, 27 (7), 1655–1662. 10.1021/acs.bioconjchem.6b00195. PubMed DOI PMC
Huang S. S.; Wang X.; Zhang Y.; Doke A.; DiFilippo F. P.; Heston W. D. Improving the Biodistribution of PSMA-Targeting Tracers With a Highly Negatively Charged Linker. Prostate 2014, 74 (7), 702–713. 10.1002/pros.22789. PubMed DOI
Barinka C.; Byun Y.; Dusich C. L.; Banerjee S. R.; Chen Y.; Castanares M.; Kozikowski A. P.; Mease R. C.; Pomper M. G.; Lubkowski J. Interactions between Human Glutamate Carboxypeptidase II and Urea-Based Inhibitors: Structural Characterization. J. Med. Chem. 2008, 51 (24), 7737–7743. 10.1021/jm800765e. PubMed DOI PMC
Novakova Z.; Wozniak K.; Jancarik A.; Rais R.; Wu Y.; Pavlicek J.; Ferraris D.; Havlinova B.; Ptacek J.; Vavra J.; Hin N.; Rojas C.; Majer P.; Slusher B. S.; Tsukamoto T.; Barinka C. Unprecedented Binding Mode of Hydroxamate-Based Inhibitors of Glutamate Carboxypeptidase II: Structural Characterization and Biological Activity. J. Med. Chem. 2016, 59 (10), 4539–4550. 10.1021/acs.jmedchem.5b01806. PubMed DOI
Novakova Z.; Cerny J.; Choy C. J.; Nedrow J. R.; Choi J. K.; Lubkowski J.; Berkman C. E.; Barinka C. Design of Composite Inhibitors Targeting Glutamate Carboxypeptidase II: the Importance of Effector Functionalities. FEBS J. 2016, 283 (1), 130–143. 10.1111/febs.13557. PubMed DOI PMC
Sanchez-Crespo A. Comparison of Gallium-68 and Fluorine-18 Imaging Characteristics in Positron Emission Tomography. Appl. Radiat. Isot. 2013, 76, 55–62. 10.1016/j.apradiso.2012.06.034. PubMed DOI
Wang H.; Byun Y.; Barinka C.; Pullambhatla M.; Hyo-eun C. B.; Fox J. J.; Lubkowski J.; Mease R. C.; Pomper M. G. Bioisosterism of Urea-Based GCPII Inhibitors: Synthesis and Structure–Activity Relationship Studies. Bioorg. Med. Chem. Lett. 2010, 20 (1), 392–397. 10.1016/j.bmcl.2009.10.061. PubMed DOI PMC
Maresca K. P.; Hillier S. M.; Femia F. J.; Keith D.; Barone C.; Joyal J. L.; Zimmerman C. N.; Kozikowski A. P.; Barrett J. A.; Eckelman W. C.; Babich J. W. A Series of Halogenated Heterodimeric Inhibitors of Prostate Specific Membrane Antigen (PSMA) as Radiolabeled Probes for Targeting Prostate Cancer. J. Med. Chem. 2008, 52 (2), 347–357. 10.1021/jm800994j. PubMed DOI
Pavlicek J.; Ptacek J.; Cerny J.; Byun Y.; Skultetyova L.; Pomper M. G.; Lubkowski J.; Barinka C. Structural Characterization of P1’-Diversified Urea-Based Inhibitors of Glutamate Carboxypeptidase II. Bioorg. Med. Chem. Lett. 2014, 24 (10), 2340–2345. 10.1016/j.bmcl.2014.03.066. PubMed DOI PMC
Yang X.; Mease R. C.; Pullambhatla M.; Lisok A.; Chen Y.; Foss C. A.; Wang Y.; Shallal H.; Edelman H.; Hoye A. T.; Attardo G.; Nimmagadda S.; Pomper M. G. [18F]Fluorobenzoyllysinepentanedioic Acid Carbamates: New Scaffolds for Positron Emission Tomography (PET) Imaging of Prostate-Specific Membrane Antigen (PSMA). J. Med. Chem. 2016, 59 (1), 206–218. 10.1021/acs.jmedchem.5b01268. PubMed DOI PMC
Barinka C.; Hlouchova K.; Rovenska M.; Majer P.; Dauter M.; Hin N.; Ko Y. S.; Tsukamoto T.; Slusher B. S.; Konvalinka J.; Lubkowski J. Structural Basis of Interactions between Human Glutamate Carboxypeptidase II and Its Substrate Analogs. J. Mol. Biol. 2008, 376 (5), 1438–1450. 10.1016/j.jmb.2007.12.066. PubMed DOI PMC
Tykvart J.; Schimer J.; Jancarik A.; Barinkova J.; Navratil V.; Starkova J.; Sramkova K.; Konvalinka J.; Majer P.; Sacha P. Design of Highly Potent Urea-Based, Exosite-Binding Inhibitors Selective for Glutamate Carboxypeptidase II. J. Med. Chem. 2015, 58 (10), 4357–4363. 10.1021/acs.jmedchem.5b00278. PubMed DOI
Giesel F. L.; Hadaschik B.; Cardinale J.; Radtke J.; Vinsensia M.; Lehnert W.; Kesch C.; Tolstov Y.; Singer S.; Grabe N.; Duensing S.; Schafer M.; Neels O. C.; Mier W.; Haberkorn U.; Kopka K.; Kratochwil C. F-18 Labelled PSMA-1007: Biodistribution, Radiation Dosimetry and Histopathological Validation of Tumor Lesions in Prostate Cancer Patients. Eur. J. Nucl. Med. Mol. Imaging 2017, 44 (4), 678–688. 10.1007/s00259-016-3573-4. PubMed DOI PMC
Ravert H. T.; Holt D. P.; Chen Y.; Mease R. C.; Fan H.; Pomper M. G.; Dannals R. F. An Improved Synthesis of the Radiolabeled Prostate-Specific Membrane Antigen Inhibitor, [(18) F]DCFPyL. J. Labelled Compd. Radiopharm. 2016, 59 (11), 439–450. 10.1002/jlcr.3430. PubMed DOI PMC
Structural basis of prostate-specific membrane antigen recognition by the A9g RNA aptamer