Feature-Based Molecular Networking to Target the Isolation of New Caffeic Acid Esters from Yacon (Smallanthus sonchifolius, Asteraceae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20205002 and 20205004
Internal Grant Agency of FTA, Czech University of Life Sciences Prague, Czech Republic.
PubMed
33066019
PubMed Central
PMC7601859
DOI
10.3390/metabo10100407
PII: metabo10100407
Knihovny.cz E-zdroje
- Klíčová slova
- caffeic acid esters, chlorogenic acids, metabolomics, molecular networking,
- Publikační typ
- časopisecké články MeSH
Smallanthus sonchifolius (yacon) is an edible tuberous Andean shrub that has been included in the diet of indigenous people since before recorded history. The nutraceutical and medicinal properties of yacon are widely recognized, especially for the improvement of hyperglycemic disorders. However, the chemical diversity of the main bioactive series of caffeic acid esters has not been explored in detail. In this metabolomics study, we applied the latest tools to facilitate the targeted isolation of new caffeic acid esters. Using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), we analyzed extracts from different organs (roots, vascular tissues of the stems, stem epidermis, leaves, bracts, and ray flowers) and followed a feature-based molecular networking approach to characterize the structural diversity of caffeic acid esters and recognize new compounds. The analysis identified three potentially new metabolites, one of them confirmed by isolation and full spectroscopic/spectrometric assignment using nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS), and MS/MS. This metabolite (5-O-caffeoyl-2,7-anhydro-d-glycero-β-d-galacto-oct-2-ulopyranosonic acid), along with eight known caffeic acid esters, was isolated from the roots and stems. Furthermore, based on detailed tandem MS analyses, we suggest that the two isomeric monocaffeoyl-2,7-anhydro-2-octulopyranosonic acids found in yacon can be reliably distinguished based on their characteristic MS2 and MS3 spectra. The outcome of the current study confirms the utility of feature-based molecular networking as a tool for targeted isolation of previously undescribed metabolites and reveals the full diversity of potentially bioactive metabolites from S. sonchifolius.
Zobrazit více v PubMed
Grau A., Rea J. Yacon. Smallanthus sonchifolius (Poepp. & Endl.) H. Robinson. In: Hermann M., Heller J., editors. Andean Roots and Tubers: Ahipa, Arracacha, Maca and Yacon. Promoting the Conservation and Use of Underutilized and Neglected Crops. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute; Rome, Italy: 1997. p. 255.
Oliveira G.O., Braga C.P., Fernandes A.A.H. Improvement of biochemical parameters in type 1 diabetic rats after the roots aqueous extract of yacon [Smallanthus sonchifolius (Poepp.& Endl.)] treatment. Food Chem. Toxicol. 2013;59:256–260. doi: 10.1016/j.fct.2013.05.050. PubMed DOI
Honoré S.M., Cabrera W.M., Genta S.B., Sánchez S.S. Protective effect of yacon leaves decoction against early nephropathy in experimental diabetic rats. Food Chem. Toxicol. 2012;50:1704–1715. doi: 10.1016/j.fct.2012.02.073. PubMed DOI
Genta S., Cabrera W., Habib N., Pons J., Carillo I.M., Grau A., Sánchez S. Yacon syrup: Beneficial effects on obesity and insulin resistance in humans. Clin. Nutr. 2009;28:182–187. doi: 10.1016/j.clnu.2009.01.013. PubMed DOI
Valentová K., Lebeda A., Doležalová I., Jirovský D., Simonovska B., Vovk I., Kosina P., Gasmanová N., Dziechciarková M., Ulrichová J. The biological and chemical variability of Yacon. J. Agric. Food Chem. 2006;54:1347–1352. doi: 10.1021/jf052645u. PubMed DOI
Causey J.L., Feirtag J.M., Gallaher D.D., Tungland B.C., Slavin J.L. Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutr. Res. 2000;20:191–201. doi: 10.1016/S0271-5317(99)00152-9. DOI
Genta S.B., Cabrera W.M., Mercado M.I., Grau A., Catalán C.A., Sánchez S.S. Hypoglycemic activity of leaf organic extracts from Smallanthus sonchifolius: Constituents of the most active fractions. Chem. Biol. Interact. 2010;185:143–152. doi: 10.1016/j.cbi.2010.03.004. PubMed DOI
Park J.-S., Yang J.-S., Hwang B.-Y., Yoo B.-K., Han K. Hypoglycemic effect of yacon tuber extract and its constituent, chlorogenic acid, in streptozotocin-induced diabetic rats. Biomol. Ther. 2009;17:256–262. doi: 10.4062/biomolther.2009.17.3.256. DOI
Takenaka M., Yan X., Ono H., Yoshida M., Nagata T., Nakanishi T. Caffeic acid derivatives in the roots of yacon (Smallanthus sonchifolius) J. Agric. Food Chem. 2003;51:793–796. doi: 10.1021/jf020735i. PubMed DOI
Takenaka M., Ono H. Novel octulosonic acid derivatives in the composite Smallanthus sonchifolius. Tetrahedron Lett. 2003;44:999–1002. doi: 10.1016/S0040-4039(02)02742-9. DOI
Terada S., Itoh K., Noguchi N., Ishida T. Alpha-Glucosidase Inhibitor for Blood Glucose Level Elevation and Functional Food Containing Tricaffeoylaldaric Acid and Method for Producing Tricaffeoylaldaric Acid. 209649. U.S. Patent. 2009 Aug 20;
Padilla-González G.F., Amrehn E., Frey M., Gómez-Zeledón J., Kaa A., Da Costa F.B., Spring O. Metabolomic and gene expression studies reveal the diversity, distribution and spatial regulation of the specialized metabolism of yacon (Smallanthus sonchifolius, Asteraceae) Int. J. Mol. Sci. 2020;21:4555. doi: 10.3390/ijms21124555. PubMed DOI PMC
Da Silva M.D.F.G., Dionísio A.P., de Abreu F.A.P., de Brito E.S., Wurlitzer N.J., Silva L.M.A., Ribeiro P.R.V., Rodrigues S., Taniguchi C.A.K., Pontes D.F. Evaluation of nutritional and chemical composition of yacon syrup using 1H NMR and UPLC-ESI-Q-TOF-MSE. Food Chem. 2018;245:1239–1247. doi: 10.1016/j.foodchem.2017.11.092. PubMed DOI
Padilla-González G.F., Frey M., Gómez-Zeledón J., Da Costa F.B., Spring O. Metabolomic and gene expression approaches reveal the developmental and environmental regulation of the secondary metabolism of yacon (Smallanthus sonchifolius, Asteraceae) Sci. Rep. 2019;9:13178. doi: 10.1038/s41598-019-49246-2. PubMed DOI PMC
Zhang Y., Shi P., Qu H., Cheng Y. Characterization of phenolic compounds in Erigeron breviscapus by liquid chromatography coupled to electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2007;21:2971–2984. doi: 10.1002/rcm.3166. PubMed DOI
Zhang Y., Zhao Q., Ma J., Wu B., Zeng X. Chemical characterization of phenolic compounds in Erigeron injection by rapid-resolution LC coupled with multi-stage and quadrupole-TOF-MS. Chromatographia. 2010;72:651–658. doi: 10.1365/s10337-010-1703-x. DOI
Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC
Nothias L.-F., Petras D., Schmid R., Dührkop K., Rainer J., Sarvepalli A., Protsyuk I., Ernst M., Tsugawa H., Fleischauer M., et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods. 2020;17:905–908. doi: 10.1038/s41592-020-0933-6. PubMed DOI PMC
Padilla-González G.F., Diazgranados M., Da Costa F.B. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 2017;7:8835. doi: 10.1038/s41598-017-09431-7. PubMed DOI PMC
Padilla-González G.F., Diazgranados M., Oliveira T.B., Chagas-Paula D.A., Da Costa F.B. Chemistry of the subtribe Espeletiinae (Asteraceae) and its correlation with phylogenetic data: An in silico chemosystematic approach. Bot. J. Linn. Soc. 2018;186:18–46. doi: 10.1093/botlinnean/box078. DOI
Ernst M., Kang K.B., Caraballo-Rodríguez A.M., Nothias L.-F., Wandy J., Chen C., Wang M., Rogers S., Medema M.H., Dorrestein P.C., et al. MolNetEnhancer: Enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites. 2019;9:144. doi: 10.3390/metabo9070144. PubMed DOI PMC
Clifford M.N., Knight S., Kuhnert N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J. Agric. Food Chem. 2005;53:3821–3832. doi: 10.1021/jf050046h. PubMed DOI
Dudek M.K., Dudkowski Ł., Bazylko A., Kaźmierski S., Kiss A.K. Caffeic acid derivatives isolated from the aerial parts of Galinsoga parviflora and their effect on inhibiting oxidative burst in human neutrophils. Phytochem. Lett. 2016;16:303–310. doi: 10.1016/j.phytol.2016.05.007. DOI
Choi Y.H., Kim H.K., Linthorst H.J.M., Hollander J.G., Lefeber A.W.M., Erkelens C., Nuzillard J.-M., Verpoorte R. NMR Metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tabacum leaves. J. Nat. Prod. 2006;69:742–748. doi: 10.1021/np050535b. PubMed DOI
Pluskal T., Castillo S., Villar-Briones A., Oresic M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11:395. doi: 10.1186/1471-2105-11-395. PubMed DOI PMC
Horai H., Arita M., Kanaya S., Nihei Y., Ikeda T., Suwa K., Ojima Y., Tanaka K., Tanaka S., Aoshima K., et al. MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010;45:703–714. doi: 10.1002/jms.1777. PubMed DOI
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Sumner L.W., Amberg A., Barrett D., Beale M.H., Beger R., Daykin C.A., Fan T.W.-M., Fiehn O., Goodacre R., Griffin J.L., et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC