Studying Plant Specialized Metabolites Using Computational Metabolomics Strategies

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38656511

Plant specialized metabolites have diversified vastly over the course of plant evolution, and they are considered key players in complex interactions between plants and their environment. The chemical diversity of these metabolites has been widely explored and utilized in agriculture and crop enhancement, the food industry, and drug development, among other areas. However, the immensity of the plant metabolome can make its exploration challenging. Here we describe a protocol for exploring plant specialized metabolites that combines high-resolution mass spectrometry and computational metabolomics strategies, including molecular networking, identification of structural motifs, as well as prediction of chemical structures and metabolite classes.

Erratum v

PubMed

Zobrazit více v PubMed

Weng J-K, Philippe RN, Noel JP (2012) The rise of chemodiversity in plants. Science 336:1667–1670. https://doi.org/10.1126/science.1217411 PubMed DOI

Jorge TF, Rodrigues JA, Caldana C et al (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35:620–649. https://doi.org/10.1002/mas.21449 PubMed DOI

Fiehn O (2002) Metabolomics the link between genotypes and phenotypes. Plant Mol Biol 48:155–171. https://doi.org/10.1023/A:1013713905833 PubMed DOI

Tsugawa H, Rai A, Saito K, Nakabayashi R (2021) Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat Prod Rep 38:1729–1759. https://doi.org/10.1039/D1NP00014D PubMed DOI

Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285 PubMed DOI

Ahmed N, Alam M, Saeed M et al (2021) Botanical insecticides are a non-toxic alternative to conventional pesticides in the control of insects and pests. In: Global decline of insects. IntechOpen, London, pp 1–19

Sharmeen JB, Mahomoodally FM, Zengin G, Maggi F (2021) Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 26:666. https://doi.org/10.3390/molecules26030666 PubMed DOI PMC

Kallscheuer N, Classen T, Drepper T, Marienhagen J (2019) Production of plant metabolites with applications in the food industry using engineered microorganisms. Curr Opin Biotechnol 56:7–17. https://doi.org/10.1016/j.copbio.2018.07.008 PubMed DOI

Kessler A, Kalske A (2018) Plant secondary metabolite diversity and species interactions. Annu Rev Ecol Evol Syst 49:115. https://doi.org/10.1146/annurev-ecolsys-110617-062406 DOI

Verpoorte R, Choi YH, Mustafa NR, Kim HK (2008) Metabolomics: back to basics. Phytochem Rev 7:525–537. https://doi.org/10.1007/s11101-008-9091-7 DOI

Alseekh S, Aharoni A, Brotman Y et al (2021) Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods 18:747–756. https://doi.org/10.1038/s41592-021-01197-1 PubMed DOI PMC

Oikawa A, Otsuka T, Jikumaru Y et al (2011) Effects of freeze-drying of samples on metabolite levels in metabolome analyses. J Sep Sci 34:3561–3567. https://doi.org/10.1002/jssc.201100466 PubMed DOI

Kim HK, Verpoorte R (2010) Sample preparation for plant metabolomics. Phytochem Anal 21:4–13. https://doi.org/10.1002/pca.1188 PubMed DOI

Zhang Q-W, Lin L-G, Ye W-C (2018) Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med 13:20. https://doi.org/10.1186/s13020-018-0177-x PubMed DOI PMC

Camel V (2014) Extraction methodologies in plants: general introduction. In: Encyclopedia of analytical chemistry. Elsevier, Amsterdam, pp 1–26

Fiehn O, Wohlgemuth G, Scholz M et al (2008) Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J 53:691–704. https://doi.org/10.1111/j.1365-313X.2007.03387.x PubMed DOI

Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 3:211–221. https://doi.org/10.1007/s11306-007-0082-2 PubMed DOI PMC

Goodacre R, Broadhurst D, Smilde AK et al (2007) Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3:231–241. https://doi.org/10.1007/s11306-007-0081-3 DOI

Fiehn O, Sumner LW, Rhee SY et al (2007) Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics 3:195–201. https://doi.org/10.1007/s11306-007-0068-0 DOI

Vinay CM, Udayamanoharan SK, Prabhu Basrur N et al (2021) Current analytical technologies and bioinformatic resources for plant metabolomics data. Plant Biotechnol Rep 15:561–572. https://doi.org/10.1007/s11816-021-00703-3 DOI

Robards K, Ryan D (2022) High performance liquid chromatography: separations. In: Robards K, Ryan D (eds) Principles and practice of modern chromatographic methods, 2nd edn. Academic Press, Amsterdam, pp 283–336 DOI

Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 301:298–307. https://doi.org/10.1006/abio.2001.5513 PubMed DOI

Antonio C, Larson T, Gilday A et al (2008) Hydrophilic interaction chromatography/electrospray mass spectrometry analysis of carbohydrate-related metabolites from Arabidopsis thaliana leaf tissue. Rapid Commun Mass Spectrom 22:1399–1407. https://doi.org/10.1002/rcm.3519 PubMed DOI

Dührkop K, Fleischauer M, Ludwig M et al (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 16:299–302. https://doi.org/10.1038/s41592-019-0344-8 PubMed DOI

da Silva RR, Dorrestein PC, Quinn RA (2015) Illuminating the dark matter in metabolomics. Proc Natl Acad Sci U S A 112:12549–12550 PubMed DOI PMC

Bittremieux W, Wang M, Dorrestein PC (2022) The critical role that spectral libraries play in capturing the metabolomics community knowledge. Metabolomics 18:94. https://doi.org/10.1007/s11306-022-01947-y PubMed DOI PMC

Wang M, Carver JJ, Phelan VV et al (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34:828–837. https://doi.org/10.1038/nbt.3597 PubMed DOI PMC

Quinn RA, Nothias L-F, Vining O et al (2017) Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol Sci 38:143–154. https://doi.org/10.1016/j.tips.2016.10.011 PubMed DOI

van der Hooft JJJ, Wandy J, Barrett MP et al (2016) Topic modeling for untargeted substructure exploration in metabolomics. Proc Natl Acad Sci U S A 113:13738–13743. https://doi.org/10.1073/pnas.1608041113 PubMed DOI PMC

de Jonge NF, Louwen JJR, Chekmeneva E et al (2023) MS2Query: reliable and scalable MS2 mass spectra-based analogue search. Nat Commun 14:1752. https://doi.org/10.1038/s41467-023-37446-4 PubMed DOI PMC

Dührkop K, Shen H, Meusel M et al (2015) Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci U S A 112:12580–12585. https://doi.org/10.1073/pnas.1509788112 PubMed DOI PMC

Dührkop K, Nothias L-F, Fleischauer M et al (2021) Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol 39:462–471. https://doi.org/10.1038/s41587-020-0740-8 PubMed DOI

Ernst M, Nothias L-F, van der Hooft JJJ et al (2019) Assessing specialized metabolite diversity in the cosmopolitan plant genus euphorbia L. Front Plant Sci 10:846. https://doi.org/10.3389/fpls.2019.00846 PubMed DOI PMC

Silva E, da Graça JP, Porto C et al (2020) Unraveling Asian soybean rust metabolomics using mass spectrometry and molecular networking approach. Sci Rep 10:138. https://doi.org/10.1038/s41598-019-56782-4 PubMed DOI PMC

Kang KB, Ernst M, van der Hooft JJJ et al (2019) Comprehensive mass spectrometry-guided phenotyping of plant specialized metabolites reveals metabolic diversity in the cosmopolitan plant family Rhamnaceae. Plant J 98:1134–1144. https://doi.org/10.1111/tpj.14292 PubMed DOI

Chambers MC, Maclean B, Burke R et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. https://doi.org/10.1038/nbt.2377 PubMed DOI PMC

Schmid R, Heuckeroth S, Korf A et al (2023) Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol 41:447. https://doi.org/10.1038/s41587-023-01690-2 PubMed DOI PMC

Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303 PubMed DOI PMC

Nothias L-F, Petras D, Schmid R et al (2020) Feature-based molecular networking in the GNPS analysis environment. Nat Methods 17:905–908. https://doi.org/10.1038/s41592-020-0933-6 PubMed DOI PMC

Allard P-M, Gaudry A, Quirós-Guerrero L-M et al (2022) Open and reusable annotated mass spectrometry dataset of a chemodiverse collection of 1,600 plant extracts. Gigascience 12:giac124. https://doi.org/10.1093/gigascience/giac124 PubMed DOI

Mutabdžija L, Myoli A, de Jonge NF et al (2023) Ranunculales supplementary data. Zenodo. https://doi.org/10.5281/ZENODO.7784920

Rogers S, Ong CW, Wandy J et al (2019) Deciphering complex metabolite mixtures by unsupervised and supervised substructure discovery and semi-automated annotation from MS/MS spectra. Faraday Discuss 218:284–302. https://doi.org/10.1039/c8fd00235e PubMed DOI

Ernst M, Kang KB, Caraballo-Rodríguez AM et al (2019) MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Meta 9:144. https://doi.org/10.3390/metabo9070144 DOI

Hoffmann MA, Nothias L-F, Ludwig M et al (2022) High-confidence structural annotation of metabolites absent from spectral libraries. Nat Biotechnol 40:411–421. https://doi.org/10.1038/s41587-021-01045-9 PubMed DOI

Wandy J, Zhu Y, van der Hooft JJJ et al (2018) Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry. Bioinformatics 34:317–318. https://doi.org/10.1093/bioinformatics/btx582 PubMed DOI

Guo J, Huan T (2020) Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics. Anal Chem 92:8072–8080. https://doi.org/10.1021/acs.analchem.9b05135 PubMed DOI

Davies V, Wandy J, Weidt S et al (2021) Rapid development of improved data-dependent acquisition strategies. Anal Chem 93:5676–5683. https://doi.org/10.1021/acs.analchem.0c03895 PubMed DOI PMC

mzML 1.1.0 Specification. https://www.psidev.info/mzML. Accessed 2 Feb 2023

Djoumbou Feunang Y, Eisner R, Knox C et al (2016) ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform 8:61. https://doi.org/10.1186/s13321-016-0174-y PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...