Plasmon-induced trap filling at grain boundaries in perovskite solar cells

. 2021 Oct 28 ; 10 (1) : 219. [epub] 20211028

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34711799

Grantová podpora
C5037-18G Research Grants Council, University Grants Committee (RGC, UGC)
PolyU152140/19E Research Grants Council, University Grants Committee (RGC, UGC)
51863013 National Natural Science Foundation of China (National Science Foundation of China)
61874052 National Natural Science Foundation of China (National Science Foundation of China)
20-01673S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
20-01673S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 34711799
PubMed Central PMC8553803
DOI 10.1038/s41377-021-00662-y
PII: 10.1038/s41377-021-00662-y
Knihovny.cz E-zdroje

The deep-level traps induced by charged defects at the grain boundaries (GBs) of polycrystalline organic-inorganic halide perovskite (OIHP) films serve as major recombination centres, which limit the device performance. Herein, we incorporate specially designed poly(3-aminothiophenol)-coated gold (Au@PAT) nanoparticles into the perovskite absorber, in order to examine the influence of plasmonic resonance on carrier dynamics in perovskite solar cells. Local changes in the photophysical properties of the OIHP films reveal that plasmon excitation could fill trap sites at the GB region through photo-brightening, whereas transient absorption spectroscopy and density functional theory calculations correlate this photo-brightening of trap states with plasmon-induced interfacial processes. As a result, the device achieved the best efficiency of 22.0% with robust operational stability. Our work provides unambiguous evidence for plasmon-induced trap occupation in OIHP and reveals that plasmonic nanostructures may be one type of efficient additives to overcome the recombination losses in perovskite solar cells and thin-film solar cells in general.

Erratum v

PubMed

Zobrazit více v PubMed

Correa-Baena JP, et al. Promises and challenges of perovskite solar cells. Science. 2017;358:739–744. PubMed

Park NG, et al. Towards stable and commercially available perovskite solar cells. Nat. Energy. 2016;1:16152.

Rajagopal A, Yao K, Jen AKY. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Adv. Mater. 2018;30:1800455. PubMed

Brenner TM, et al. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016;1:15007.

Doherty TAS, et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature. 2020;580:360–366. PubMed

Pazos-Outón LM, Xiao TP, Yablonovitch E. Fundamental efficiency limit of lead iodide perovskite solar cells. J. Phys. Chem. Lett. 2018;9:1703–1711. PubMed

Luo DY, et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 2020;5:44–60.

Park BW, Seok SI. Intrinsic instability of inorganic-organic hybrid halide perovskite materials. Adv. Mater. 2019;31:1805337. PubMed

deQuilettes DW, et al. Charge-carrier recombination in halide perovskites. Chem. Rev. 2019;119:11007–11019. PubMed

Ni ZY, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science. 2020;367:1352–1358. PubMed

Chen B, et al. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019;48:3842–3867. PubMed

Aydin E, De Bastiani M, De Wolf S. Defect and contact passivation for perovskite solar cells. Adv. Mater. 2019;31:1900428. PubMed

Zheng XP, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy. 2017;2:17102.

Ono LK, Liu SZ, Qi YB. Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 2020;59:6676–6698. PubMed PMC

Bi DQ, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% Nat. Energy. 2016;1:16142.

Bai S, et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature. 2019;571:245–250. PubMed

Yavari M, et al. Carbon nanoparticles in high-performance perovskite solar cells. Adv. Energy Mater. 2018;8:1702719.

Li SS, et al. Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles. Energy Environ. Sci. 2016;9:1282–1289.

Tiong VT, et al. Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells. Adv. Funct. Mater. 2018;28:1705545.

Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010;9:205–213. PubMed

Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics. 2014;8:95–103.

Cushing SK, Wu NQ. Progress and perspectives of plasmon-enhanced solar energy conversion. J. Phys. Chem. Lett. 2016;7:666–675. PubMed

Huang XY, et al. Efficient plasmon-hot electron conversion in Ag-CsPbBr3 hybrid nanocrystals. Nat. Commun. 2019;10:1163. PubMed PMC

Carretero-Palacios S, Jiménez-Solano A, Míguez H. Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide. ACS Energy Lett. 2016;1:323–331. PubMed PMC

Saliba M, et al. Plasmonic-induced photon recycling in metal halide perovskite solar cells. Adv. Funct. Mater. 2015;25:5038–5046.

Tan SJ, et al. Plasmonic coupling at a metal/semiconductor interface. Nat. Photonics. 2017;11:806–812.

Ye T, et al. Performance enhancement of tri-cation and dual-anion mixed perovskite solar cells by Au@SiO2 nanoparticles. Adv. Funct. Mater. 2017;27:1606545.

Salvador M, et al. Electron accumulation on metal nanoparticles in plasmon-enhanced organic solar cells. ACS Nano. 2012;6:10024–10032. PubMed

Wang F, et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 2016;28:9986–9992. PubMed

Qian K, et al. Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene. Analyst. 2012;137:4644–4646. PubMed

Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951;11:55–75.

Li SB, et al. Unravelling the mechanism of ionic fullerene passivation for efficient and stable methylammonium-free perovskite solar cells. ACS Energy Lett. 2020;5:2015–2022.

Wu SF, et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule. 2020;4:1248–1262.

Choi H, et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat. Photonics. 2013;7:732–738.

Ahn N, et al. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 2016;7:13422. PubMed PMC

Tress W, et al. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 2018;11:151–165.

Khenkin MV, et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy. 2020;5:35–49.

Wang J, et al. Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics. ACS Energy Lett. 2019;4:222–227.

de Quilettes DW, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science. 2015;348:683–686. PubMed

Li JJ, et al. Microscopic investigation of grain boundaries in organolead halide perovskite solar cells. ACS Appl. Mater. Interfaces. 2015;7:28518–28523. PubMed

Chakrabartty J, et al. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases. Nat. Photonics. 2018;12:271–276.

Dvořák P, et al. Control and near-field detection of surface plasmon interference patterns. Nano Lett. 2013;13:2558–2563. PubMed

Qin TX, et al. Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy. Light. Sci. Appl. 2021;10:84. PubMed PMC

Pockett A, et al. Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent spectroscopy. J. Phys. Chem. C. 2015;119:3456–3465.

Zhao YC, et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light. Sci. Appl. 2017;6:e16243. PubMed PMC

Shockley W, Read WT., Jr. Statistics of the recombinations of holes and electrons. Phys. Rev. J. Arch. 1952;87:835–842.

Manser JS, Kamat PV. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics. 2014;8:737–743.

Johnston MB, Herz LM. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 2016;49:146–154. PubMed

Rehman W, et al. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 2015;27:7938–7944. PubMed

Yang Y, et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics. 2016;10:53–59.

Fu JH, et al. Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 2017;8:1300. PubMed PMC

Price MB, et al. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites. Nat. Commun. 2015;6:8420. PubMed PMC

Ma XC, et al. Energy transfer in plasmonic photocatalytic composites. Light. Sci. Appl. 2016;5:e16017. PubMed PMC

Li JT, et al. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics. 2015;9:601–607.

Sergeev AA, et al. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays. Light. Sci. Appl. 2020;9:16. PubMed PMC

Jia CC, et al. Interface-engineered plasmonics in metal/semiconductor heterostructures. Adv. Energy Mater. 2016;6:1600431.

Häkkinen H, Barnett RN, Landman U. Electronic structure of passivated Au38(SCH3)24 nanocrystal. Phys. Rev. Lett. 1999;82:3264–3267.

Hu CY, et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 2019;141:7807–7814. PubMed

Sherkar TS, et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2017;2:1214–1222. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...