Metabolic Pathways of Acylcarnitine Synthesis
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38752770
PubMed Central
PMC11412349
DOI
10.33549/physiolres.935261
PII: 935261
Knihovny.cz E-zdroje
- MeSH
- karnitin * analogy a deriváty metabolismus biosyntéza MeSH
- lidé MeSH
- metabolické sítě a dráhy * MeSH
- metabolomika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- acylcarnitine MeSH Prohlížeč
- karnitin * MeSH
Acylcarnitines are important markers in metabolic studies of many diseases, including metabolic, cardiovascular, and neurological disorders. We reviewed analytical methods for analyzing acylcarnitines with respect to the available molecular structural information, the technical limitations of legacy methods, and the potential of new mass spectrometry-based techniques to provide new information on metabolite structure. We summarized the nomenclature of acylcarnitines based on historical common names and common abbreviations, and we propose the use of systematic abbreviations derived from the shorthand notation for lipid structures. The transition to systematic nomenclature will facilitate acylcarnitine annotation, reporting, and standardization in metabolomics. We have reviewed the metabolic origins of acylcarnitines important for the biological interpretation of human metabolomic profiles. We identified neglected isomers of acylcarnitines and summarized the metabolic pathways involved in the synthesis and degradation of acylcarnitines, including branched-chain lipids and amino acids. We reviewed the primary literature, mapped the metabolic transformations of acyl-CoAs to acylcarnitines, and created a freely available WikiPathway WP5423 to help researchers navigate the acylcarnitine field. The WikiPathway was curated, metabolites and metabolic reactions were annotated, and references were included. We also provide a table for conversion between common names and abbreviations and systematic abbreviations linked to the LIPID MAPS or Human Metabolome Database.
Zobrazit více v PubMed
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schioth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev. 2022;74:506–551. doi: 10.1124/pharmrev.121.000408. PubMed DOI
Schooneman MG, Vaz FM, Houten SM, Soeters MR. Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes. 2013;62:1–8. doi: 10.2337/db12-0466. PubMed DOI PMC
Miller MJ, Cusmano-Ozog K, Oglesbee D, Young S, Committee ALQA. Laboratory analysis of acylcarnitines, 2020 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG) Genet Med. 2021;23:249–258. doi: 10.1038/s41436-020-00990-1. PubMed DOI
Cajka T. Towards Merging Targeted and Untargeted Analysis of the Lipidome, Metabolome, and Exposome. LCGC Eur. 2019;32:314–316.
Hancock SE, Poad BL, Batarseh A, Abbott SK, Mitchell TW. Advances and unresolved challenges in the structural characterization of isomeric lipids. Anal Biochem. 2017;24:45–55. doi: 10.1016/j.ab.2016.09.014. PubMed DOI
Menzel JP, Young RSE, Benfield AH, Scott JS, Wongsomboon P, Cudlman L, Cvacka J, Butler LM, Henriques ST, Poad BLJ, Blanksby SJ. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat Commun. 2023;14:3940. doi: 10.1038/s41467-023-39617-9. PubMed DOI PMC
Yu D, Zhou L, Xuan Q, Wang L, Zhao X, Lu X, Xu G. Strategy for Comprehensive Identification of Acylcarnitines Based on Liquid Chromatography-High-Resolution Mass Spectrometry. Anal Chem. 2018;90:5712–5718. doi: 10.1021/acs.analchem.7b05471. PubMed DOI
Giesbertz P, Ecker J, Haag A, Spanier B, Daniel H. An LC-MS/MS method to quantify acylcarnitine species including isomeric and odd-numbered forms in plasma and tissues. J Lipid Res. 2015;56:2029–2039. doi: 10.1194/jlr.D061721. PubMed DOI PMC
Minkler PE, Stoll MS, Ingalls ST, Yang S, Kerner J, Hoppel CL. Quantification of carnitine and acylcarnitines in biological matrices by HPLC electrospray ionization-mass spectrometry. Clin Chem. 2008;54:1451–1462. doi: 10.1373/clinchem.2007.099226. PubMed DOI
McDonald JG, Ejsing CS, Kopczynski D, Holčapek M, Aoki J, Arita M, Arita M, Baker ES, Bertrand-Michel J, Bowden JA, Brügger B, Ellis SR, Fedorova M, Griffiths WJ, Han X, Hartler J, Hoffmann N, Koelmel JP, Köfeler HC, Mitchell TW, et al. Introducing the Lipidomics Minimal Reporting Checklist. Nature Metabolism. 2022;4:1086–1088. doi: 10.1038/s42255-022-00628-3. PubMed DOI
Dietzen DJ, Rinaldo P, Whitley RJ, Rhead WJ, Hannon WH, Garg UC, Lo SF, Bennett MJ. National academy of clinical biochemistry laboratory medicine practice guidelines: follow-up testing for metabolic disease identified by expanded newborn screening using tandem mass spectrometry; executive summary. Clin Chem. 2009;55:1615–1626. doi: 10.1373/clinchem.2009.131300. PubMed DOI
Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T, Ejsing CS, Fedorova M, Feussner I, Griffiths WJ, Kofeler H, Merrill AH, Jr, Murphy RC, O’Donnell VB, Oskolkova O, Subramaniam S, Wakelam MJO, Spener F. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J Lipid Res. 2020;61:1539–1555. doi: 10.1194/jlr.S120001025. PubMed DOI PMC
Kopczynski D, Hoffmann N, Peng B, Liebisch G, Spener F, Ahrends R. Goslin 2.0 Implements the Recent Lipid Shorthand Nomenclature for MS-Derived Lipid Structures. Anal Chem. 2022;94:6097–6101. doi: 10.1021/acs.analchem.1c05430. PubMed DOI PMC
Liebisch G, Vizcaino JA, Kofeler H, Trotzmuller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJO. Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res. 2013;54:1523–1530. doi: 10.1194/jlr.M033506. PubMed DOI PMC
Chegary M, Brinke H, Ruiter JP, Wijburg FA, Stoll MS, Minkler PE, van Weeghel M, Schulz H, Hoppel CL, Wanders RJ, Houten SM. Mitochondrial long chain fatty acid beta-oxidation in man and mouse. Biochim Biophys Acta. 2009;1791:806–815. doi: 10.1016/j.bbalip.2009.05.006. PubMed DOI PMC
van Weeghel M, te Brinke H, van Lenthe H, Kulik W, Minkler PE, Stoll MS, Sass JO, Janssen U, Stoffel W, Schwab KO, Wanders RJ, Hoppel CL, Houten SM. Functional redundancy of mitochondrial enoyl-CoA isomerases in the oxidation of unsaturated fatty acids. FASEB J. 2012;26:4316–4326. doi: 10.1096/fj.12-206326. PubMed DOI
Vondrackova M, Kopczynski D, Hoffmann N, Kuda O. LORA, Lipid Over-Representation Analysis Based on Structural Information. Anal Chem. 2023;95:12600–12604. doi: 10.1021/acs.analchem.3c02039. PubMed DOI PMC
Li JM, Li LY, Zhang YX, Jiang ZY, Limbu SM, Qiao F, Degrace P, Chen LQ, Zhang ML, Du ZY. Functional differences between l- and d-carnitine in metabolic regulation evaluated using a low-carnitine Nile tilapia model. Br J Nutr. 2019;122:625–638. doi: 10.1017/S000711451900148X. PubMed DOI
Soeters MR, Serlie MJ, Sauerwein HP, Duran M, Ruiter JP, Kulik W, Ackermans MT, Minkler PE, Hoppel CL, Wanders RJ, Houten SM. Characterization of D-3-hydroxybutyrylcarnitine (ketocarnitine): an identified ketosis-induced metabolite. Metabolism. 2012;61:966–973. doi: 10.1016/j.metabol.2011.11.009. PubMed DOI
Schulz N, Himmelbauer H, Rath M, van Weeghel M, Houten S, Kulik W, Suhre K, Scherneck S, Vogel H, Kluge R, Wiedmer P, Joost HG, Schurmann A. Role of medium- and short-chain L-3-hydroxyacyl-CoA dehydrogenase in the regulation of body weight and thermogenesis. Endocrinology. 2011;152:4641–4651. doi: 10.1210/en.2011-1547. PubMed DOI PMC
Liu H, Tan D, Han L, Ye J, Qiu W, Gu X, Zhang H. A new case of malonyl-CoA decarboxylase deficiency with mild clinical features. Am J Med Genet A. 2016;170A:1347–1351. doi: 10.1002/ajmg.a.37590. PubMed DOI
Roe CR, Millington DS, Maltby DA. Identification of 3-methylglutarylcarnitine. A new diagnostic metabolite of 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. J Clin Invest. 1986;77:1391–1394. doi: 10.1172/JCI112446. PubMed DOI PMC
Peters H, Ferdinandusse S, Ruiter JP, Wanders RJ, Boneh A, Pitt J. Metabolite studies in HIBCH and ECHS1 defects: Implications for screening. Mol Genet Metab. 2015;115:168–173. doi: 10.1016/j.ymgme.2015.06.008. PubMed DOI
Vaclavik J, Madrova L, Kouril S, de Sousa J, Brumarova R, Janeckova H, Jacova J, Friedecky D, Knapkova M, Kluijtmans LAJ, Grunert SC, Vaz FM, Janzen N, Wanders RJA, Wevers RA, Adam T. A newborn screening approach to diagnose 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. JIMD Rep. 2020;54:79–86. doi: 10.1002/jmd2.12118. PubMed DOI PMC
Hattori T, Notsu Y, Tanaka M, Matsui M, Iida T, Watanabe J, Osawa Y, Yamaguchi S, Yano S, Taketani T, Kobayashi H. A Simple Flow Injection Analysis-Tandem Mass Spectrometry Method to Reduce False Positives of C5-Acylcarnitines Due to Pivaloylcarnitine Using Reference Ions. Children (Basel) 2022;9:694. doi: 10.3390/children9050694. PubMed DOI PMC
Minkler PE, Stoll MSK, Ingalls ST, Hoppel CL. Selective and accurate C5 acylcarnitine quantitation by UHPLC-MS/MS: Distinguishing true isovaleric acidemia from pivalate derived interference. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1061–1062:128–133. doi: 10.1016/j.jchromb.2017.07.018. PubMed DOI
Lin S, Hanson RE, Cronan JE. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat Chem Biol. 2010;6:682–688. doi: 10.1038/nchembio.420. PubMed DOI PMC
Taormina VM, Unger AL, Schiksnis MR, Torres-Gonzalez M, Kraft J. Branched-Chain Fatty Acids-An Underexplored Class of Dairy-Derived Fatty Acids. Nutrients. 2020;12:2875. doi: 10.3390/nu12092875. PubMed DOI PMC
Wallace M, Green CR, Roberts LS, Lee YM, McCarville JL, Sanchez-Gurmaches J, Meurs N, Gengatharan JM, Hover JD, Phillips SA, Ciaraldi TP, Guertin DA, Cabrales P, Ayres JS, Nomura DK, Loomba R, Metallo CM. Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nat Chem Biol. 2018;14:1021–1031. doi: 10.1038/s41589-018-0132-2. PubMed DOI PMC
Schooneman MG, Achterkamp N, Argmann CA, Soeters MR, Houten SM. Plasma acylcarnitines inadequately reflect tissue acylcarnitine metabolism. Biochim Biophys Acta. 2014;1841:987–994. doi: 10.1016/j.bbalip.2014.04.001. PubMed DOI
Makrecka-Kuka M, Sevostjanovs E, Vilks K, Volska K, Antone U, Kuka J, Makarova E, Pugovics O, Dambrova M, Liepinsh E. Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues. Sci Rep. 2017;7:17528. doi: 10.1038/s41598-017-17797-x. PubMed DOI PMC
Hadjiagapiou C, Sprecher H, Kaduce TL, Figard PH, Spector AA. Formation of 8-hydroxyhexadecatrienoic acid by vascular smooth muscle cells. Prostaglandins. 1987;34:579–589. doi: 10.1016/0090-6980(87)90100-6. PubMed DOI
Diczfalusy U. Beta-oxidation of eicosanoids. Prog Lipid Res. 1994;33:403–428. doi: 10.1016/0163-7827(94)90025-6. PubMed DOI
Johnson M, Davison P, Ramwell PW. Carnitine-dependent β Oxidation of Prostaglandins. J Biol Chem. 1972;247:5656–5658. doi: 10.1016/S0021-9258(20)81155-7. PubMed DOI
Balas L, Rise P, Gandrath D, Rovati G, Bolego C, Stellari F, Trenti A, Buccellati C, Durand T, Sala A. Rapid Metabolization of Protectin D1 by beta-Oxidation of Its Polar Head Chain. J Med Chem. 2019;62:9961–9975. doi: 10.1021/acs.jmedchem.9b01463. PubMed DOI
Gillespie ME. Reactome, release. 2003;86 doi: 10.3180/REACT_1473.1. DOI
Jassal B. Reactome, release. 2009;86 doi: 10.3180/REACT_16880.1. DOI
Houten SM, Wanders RJA, Ranea-Robles P. Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165720. doi: 10.1016/j.bbadis.2020.165720. PubMed DOI PMC
van den Brink DM, Wanders RJ. Phytanic acid: production from phytol, its breakdown and role in human disease. Cell Mol Life Sci. 2006;63:1752–1765. doi: 10.1007/s00018-005-5463-y. PubMed DOI PMC
Ferdinandusse S, Houten SM. Peroxisomes and bile acid biosynthesis. Biochim Biophys Acta. 2006;1763:1427–1440. doi: 10.1016/j.bbamcr.2006.09.001. PubMed DOI
Wang Y, Palmfeldt J, Gregersen N, Makhov AM, Conway JF, Wang M, McCalley SP, Basu S, Alharbi H, St Croix C, Calderon MJ, Watkins S, Vockley J. Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial protein complex. J Biol Chem. 2019;294:12380–12391. doi: 10.1074/jbc.RA119.008680. PubMed DOI PMC
Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 2010;33:469–477. doi: 10.1007/s10545-010-9061-2. PubMed DOI PMC
Kuerschner L, Leyendecker P, Klizaite K, Fiedler M, Saam J, Thiele C. Development of oxaalkyne and alkyne fatty acids as novel tracers to study fatty acid beta-oxidation pathways and intermediates. J Lipid Res. 2022;63:100188. doi: 10.1016/j.jlr.2022.100188. PubMed DOI PMC
Bansal P, Morgat A, Axelsen KB, Muthukrishnan V, Coudert E, Aimo L, Hyka-Nouspikel N, Gasteiger E, Kerhornou A, Neto TB, Pozzato M, Blatter MC, Ignatchenko A, Redaschi N, Bridge A. Rhea, the reaction knowledgebase in 2022. Nucleic Acids Res. 2022;50:D693–D700. doi: 10.1093/nar/gkab1016. PubMed DOI PMC