The Massalia asteroid family as the origin of ordinary L chondrites
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39415067
DOI
10.1038/s41586-024-08007-6
PII: 10.1038/s41586-024-08007-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Studies of micrometeorites in mid-Ordovician limestones and impact craters on Earth indicate that our planet witnessed a massive infall of ordinary L chondrite material about 466 million years ago1-3 that may have been at the origin of an Ordovician ice age and major turnover in biodiversity4. The breakup of a large asteroid in the main belt is the likely cause of this massive infall. Currently, material originating from this breakup still dominates meteorite falls (>20% of all falls)5. Here we provide spectroscopic observations and dynamical evidence that the Massalia collisional family is the only plausible source of this catastrophic event and the most abundant class of meteorites falling on Earth today. This family of asteroids is suitably located in the inner belt, at low-inclination orbits, which corresponds to the observed distribution of L-chondrite-like near-Earth objects and interplanetary dust concentrated at 1.4° (refs. 6,7).
Aix Marseille Université CNRS CNES LAM Institut Origines Marseille France
Charles University Faculty of Mathematics and Physics Institute of Astronomy Prague Czech Republic
Department of Astronomy and Planetary Science Northern Arizona University Flagstaff AZ USA
European Southern Observatory Santiago Chile
Faculty of Physics Weizmann Institute of Science Rehovot Israel
Lowell Observatory Flagstaff AZ USA
Lunar and Planetary Laboratory University of Arizona Tucson AZ USA
School of Physics and Astronomy University of Leicester Leicester UK
Université Côte d'Azur Observatoire de la Côte d'Azur CNRS Laboratoire Lagrange Nice France
Zobrazit více v PubMed
Heck, P. et al. Rare meteorites common in the Ordovician period. Nat. Astron. 1, 0035 (2017). DOI
Schmieder, M. & Kring, D. A. Earth’s impact events through geologic time: a list of recommended ages for terrestrial impact structures and deposits. Astrobiology 20, 91–141 (2020). PubMed DOI PMC
Kenkmann, T. The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages, lithologies, and more. Meteorit. Planet. Sci. 56, 1024–1070 (2021). DOI
Schmitz, B. et al. An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Sci. Adv. 5, eaax4184 (2019). PubMed DOI PMC
Swindle, T. D., Kring, D. A. & Weirich, J. R. DOI
Sykes, M. V. Zodiacal dust bands: Their relation to asteroid families. Icarus 85, 267–289 (1990). DOI
Reach, W. T., Franz, B. A. & Weiland, J. L. The three-dimensional structure of the zodiacal dust bands. Icarus 127, 461–484 (1997). DOI
Walton, C. R. et al. In-situ phosphate U-Pb ages of the L chondrites. Geochim. Cosmochim. Acta 359, 191–204 (2023). DOI
Heymann, D. On the origin of hypersthene chondrites: ages and shock effects of black chondrites. Icarus 6, 189–221 (1967). DOI
Marti, K. & Graf, T. Cosmic-ray exposure history of ordinary chondrites. Annu. Rev. Earth Planet. Sci. 20, 221–243 (1992). DOI
Rubin, A. E. Metallic copper in ordinary chondrites. Meteoritics 29, 93–98 (1994). DOI
Bischoff, A., Schleiting, M. & Patzek, M. Shock stage distribution of 2280 ordinary chondrites—can bulk chondrites with a shock stage of S6 exist as individual rocks? Meteorit. Planet. Sci. 54, 2189–2202 (2019). DOI
Korochantseva, E. V. et al. L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron DOI
Haack, H., Farinella, P., Scott, E. R. D. & Keil, K. Meteoritic, asteroidal, and theoretical constraints on the 500 Ma disruption of the L chondrite parent body. Icarus 119, 182–191 (1996). DOI
Schmitz, B., Peucker-Ehrenbrink, B., Lindström, M. & Tassinari, M. Accretion rates of meteorites and cosmic dust in the Early Ordovician. Science 278, 88–90 (1997). PubMed DOI
Schmitz, B., Tassinari, M. & Peucker-Ehrenbrink, B. A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet. Sci. Lett. 194, 1–15 (2001). DOI
Terfelt, F. & Schmitz, B. Asteroid break-ups and meteorite delivery to Earth the past 500 million years. Proc. Natl Acad. Sci. 118, e2020977118 (2021). PubMed DOI PMC
Greenwood, R. C., Burbine, T. H. & Franchi, I. A. Linking asteroids and meteorites to the primordial planetesimal population. Geochim. Cosmochim. Acta 277, 377–406 (2020). DOI
Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Bottke, W. F. et al.) 297–321 (Univ. Arizona Press, 2015).
Gaffey, M. J. et al. Mineralogical variations within the S-type asteroid class. Icarus 106, 573–602 (1993). DOI
Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011). PubMed DOI
Vernazza, P. et al. Multiple and fast: the accretion of ordinary chondrite parent bodies. Astrophys. J. 791, 120 (2014). DOI
Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature https://doi.org/10.1038/s41586-024-08006-7 (2024).
Pieters, C. M. and Hiroi, T. RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility. In 35th Lunar and Planetary Science Conference, abstract no. 1720 (2004).
Milliken, R. E., Hiroi, T. & Patterson, W., The NASA Reflectance Experiment Laboratory (RELAB) Facility: Past, Present, and Future. In 47th Lunar and Planetary Science Conference, LPI Contribution No. 1903, p. 2058 (2016).
Brunetto, R. et al. Modeling asteroid surfaces from observations and irradiation experiments: The case of 832 Karin. Icarus 184, 327–337 (2006). DOI
Shkuratov, Y., Starukhina, L., Hoffmann, H. & Arnold, G. A model of spectral albedo of particulate surfaces: implications for optical properties of the moon. Icarus 137, 235–246 (1999). DOI
Binzel, R. P. et al. Compositional distributions and evolutionary processes for the near-Earth object population: Results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus 324, 41–76 (2019). DOI
Gaffey, M. J. & Fieber-Beyer, S. K., Is the (20) Massalia family the source of the L-chondrites? In 50th Lunar and Planetary Science Conference, no. 2132, id. 1441 (2019).
Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018). DOI
Nesvorný, D., Bottke, W. F., Levison, H. F. & Dones, L. Recent origin of the solar system dust bands. Astrophys. J. 591, 486–497 (2003). DOI
Vokrouhlický, D., Brož, M., Bottke, W. F., Nesvorný, D. & Morbidelli, A. Yarkovsky/YORP chronology of asteroid families. Icarus 182, 118–142 (2006). DOI
Spoto, F., Milani, A. & Knežević, Z. Asteroid family ages. Icarus 257, 275–289 (2015). DOI
Marsset, M. et al. The debiased compositional distribution of MITHNEOS: global match between the near-Earth and main-belt asteroid populations, and excess of D-type near-Earth objects. Astron. J. 163, 165 (2022). DOI
Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962). DOI
Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858–860 (2008). PubMed DOI
Thomas, C. A. & Binzel, R. P. Identifying meteorite source regions through near-Earth object spectroscopy. Icarus 205, 419–429 (2010). DOI
de León, J., Licandro, J., Serra-Ricart, M., Pinilla-Alonso, & Campins, H. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astron. Astrophys. 517, A23 (2010). DOI
Dunn, T. L., Burbine, T. H., Bottke, W. F.Jr & Clark, J. P. Mineralogies and source regions of near-Earth asteroids. Icarus 222, 273–282 (2013). DOI
Ali-Lagoa, V., Müller, T. G., Usui, F. & Hasegawa, S. The AKARI IRC asteroid flux catalogue: updated diameters and albedos. Astron Astrophys. 612, A85 (2018). DOI
Alí-Lagoa, V. et al. Thermal properties of large main-belt asteroids observed by Herschel PACS. Astron. Astrophys. 638, A84 (2020). DOI
Herald, D. et al. Small Bodies Occultations Bundle V3.0. NASA Planetary Data System https://doi.org/10.26033/ap0g-wf63 (2019).
Mainzer, A. K. et al. NEOWISE Diameters and Albedos V2.0. NASA Planetary Data System https://doi.org/10.26033/18S3-2Z54 (2019).
Gail, H.-P. & Trieloff, M. Thermal history modelling of the L chondrite parent body. Astron. Astrophys. 628, A77 (2019). DOI
Love, S. G. & Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993). PubMed DOI
Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Sykes, M. Physical properties of asteroid dust bands and their sources. Icarus 181, 107–144 (2006). DOI
Gattacceca, J. et al. The Meteoritical Bulletin, No. 110. Meteorit. Planet. Sci. 57, 2102–2105 (2022). DOI
Liao, S., Huyskens, M. H., Yin, Q.-Z. & Schmitz, B. Absolute dating of the L-chondrite parent body breakup with high-precision U–Pb zircon geochronology from Ordovician limestone. Earth Planet Sci. Lett. 547, 116442 (2020). DOI
Eugster, O., Herzog, G. F., Marti, K. & Caffee, M. W. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y. Jr) 829–851 (Univ. Arizona Press, 2006).
Farley, K. A., Montanari, A., Shoemaker, E. M. & Shoemaker, C. S. Geochemical evidence for a comet shower in the Late Eocene. Science 280, 1250–1253 (1998). PubMed DOI
Schenk, P. et al. The geologically recent giant impact basins at Vesta’s South Pole. Science 336, 694–697 (2012). PubMed DOI
Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019). DOI
LSST Science Collaboration. LSST Science Book, Version 2.0. Preprint at arxiv.org/abs/0912.0201 (2009).
Colas, F. et al. FRIPON: a worldwide network to track incoming meteoroids. Astron. Astrophys. 644, A53 (2020). DOI
Spurný, P., Borovička, J. & Shrbený, L. The Žďár nad Sázavou meteorite fall: Fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery. Meteorit. Planet. Sci. 55, 376–401 (2020). DOI
Jenniskens, P. et al. The Creston, California, meteorite fall and the origin of L chondrites. Meteorit. Planet. Sci. 54, 699–720 (2019). DOI
Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010). DOI
Rayner, J. T. et al. SpeX: a medium-resolution 0.8-5.5 micron spectrograph and imager for the NASA Infrared Telescope Facility. Publ. Astron. Soc. Pac. 115, 362–382 (2003). DOI
Rivkin, A. S., Binzel, R. P. & Bus, S. J. Constraining near-Earth object albedos using near-infrared spectroscopy. Icarus 175, 175–180 (2005). DOI
Bus, S. J. & Binzel, R. P. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: the observations. Icarus 158, 106–145 (2002). DOI
Burbine, T. H. & Binzel, R. P. Small Main-Belt Asteroid Spectroscopic Survey in the near-infrared. Icarus 159, 468–499 (2002). DOI
McGraw, A. M., Reddy, V. & Sanchez, J. A. Spectroscopic characterization of the Gefion Asteroid Family: implications for L-chondrite link. Mon. Not. R. Astron. Soc. 515, 5211–5218 (2022). DOI
Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993). DOI
Britt, D. T. & Pieters, C. M. Black ordinary chondrites: an analysis of abundance and fall frequency. Meteoritics 26, 279–285 (1991). DOI
Reddy, V. et al. Chelyabinsk meteorite explains unusual spectral properties of Baptistina asteroid family. Icarus 237, 116–130 (2014). DOI
Kohout, T. et al. Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite - Insight into shock-induced changes in asteroid regoliths. Icarus 228, 78–85 (2014). DOI
Kohout, T. et al. Experimental constraints on the ordinary chondrite shock darkening caused by asteroid collisions. Astron. Astrophys. 639, A146 (2020). DOI
DeMeo, F. E. et al. Connecting asteroids and meteorites with visible and near-infrared spectroscopy. Icarus 380, 114971 (2022). DOI
Cloutis, E. A., Gaffey, M. J., Jackowski, T. L. & Reed, K. L. Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. J. Geophys. Res. 91, 11641–11653 (1986). DOI
Vernazza, P. et al. Mid-infrared spectral variability for compositionally similar asteroids: Implications for asteroid particle size distributions. Icarus 207, 800–809 (2010). DOI
Binzel, R. P. et al. Spectral properties and composition of potentially hazardous Asteroid (99942) Apophis. Icarus 200, 480–485 (2009). DOI
Dunn, T. L., McCoy, T. J., Sunshine, J. M. & McSween, H. Y. A coordinated spectral, mineralogical, and compositional study of ordinary chondrites. Icarus 208, 789–797 (2010). DOI
Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009). DOI
Nesvorný, D. et al. NEOMOD: A new orbital distribution model for near-Earth objects. Astron. J. 166, 55 (2023).
Heck, P. R., Schmitz, B., Baur, H., Halliday, A. N. & Wieler, R. Fast delivery of meteorites to Earth after a major asteroid collision. Nature 430, 323–325 (2004). PubMed DOI
Nesvorný, D., Vokrouhlický, D., Morbidelli, A. & Bottke, W. F. Asteroidal source of L chondrite meteorites. Icarus 200, 698–701 (2009). DOI
Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994). DOI
Quinn, T. R., Tremaine, S. & Duncan, M. A Three Million Year Integration of the Earth’s Orbit. Astron. J. 101, 2287 (1991). DOI
Šidlichovský, M. & Nesvorný, D. Frequency modified Fourier transform and its application to asteroids. Celest. Mech. Dyn. Astron. 65, 137–148 (1996). DOI
Vokrouhlický, D. & Farinella, P. The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for spherical bodies. Astron. J. 118, 3049–3060 (1999). DOI
Vokrouhlický, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335, 1093–1100 (1998).
Čapek, D. & Vokrouhlický, D. The YORP effect with finite thermal conductivity. Icarus 172, 526–536 (2004). DOI
Farinella, P., Vokrouhlický, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998). DOI
Holsapple, K. A. Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61. Icarus 187, 500–509 (2007). DOI
Brož, M., Vokrouhlický, D., Morbidelli, A., Nesvorný, D. & Bottke, W. F. Did the Hilda collisional family form during the late heavy bombardment? Mon. Not. R. Astron. Soc. 414, 2716–2727 (2011). DOI
Novaković, B. & Radović, V., Asteroid Families Portal. http://asteroids.matf.bg.ac.rs/fam/ (2019).
Bottke, W. F. et al. in Asteroids IV (eds Michel, P. et al.) 701–724 (Univ. Arizona Press, 2015).