The Massalia asteroid family as the origin of ordinary L chondrites

. 2024 Oct ; 634 (8034) : 561-565. [epub] 20241016

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39415067
Odkazy

PubMed 39415067
DOI 10.1038/s41586-024-08007-6
PII: 10.1038/s41586-024-08007-6
Knihovny.cz E-zdroje

Studies of micrometeorites in mid-Ordovician limestones and impact craters on Earth indicate that our planet witnessed a massive infall of ordinary L chondrite material about 466 million years ago1-3 that may have been at the origin of an Ordovician ice age and major turnover in biodiversity4. The breakup of a large asteroid in the main belt is the likely cause of this massive infall. Currently, material originating from this breakup still dominates meteorite falls (>20% of all falls)5. Here we provide spectroscopic observations and dynamical evidence that the Massalia collisional family is the only plausible source of this catastrophic event and the most abundant class of meteorites falling on Earth today. This family of asteroids is suitably located in the inner belt, at low-inclination orbits, which corresponds to the observed distribution of L-chondrite-like near-Earth objects and interplanetary dust concentrated at 1.4° (refs. 6,7).

Zobrazit více v PubMed

Heck, P. et al. Rare meteorites common in the Ordovician period. Nat. Astron. 1, 0035 (2017). DOI

Schmieder, M. & Kring, D. A. Earth’s impact events through geologic time: a list of recommended ages for terrestrial impact structures and deposits. Astrobiology 20, 91–141 (2020). PubMed DOI PMC

Kenkmann, T. The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages, lithologies, and more. Meteorit. Planet. Sci. 56, 1024–1070 (2021). DOI

Schmitz, B. et al. An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Sci. Adv. 5, eaax4184 (2019). PubMed DOI PMC

Swindle, T. D., Kring, D. A. & Weirich, J. R. DOI

Sykes, M. V. Zodiacal dust bands: Their relation to asteroid families. Icarus 85, 267–289 (1990). DOI

Reach, W. T., Franz, B. A. & Weiland, J. L. The three-dimensional structure of the zodiacal dust bands. Icarus 127, 461–484 (1997). DOI

Walton, C. R. et al. In-situ phosphate U-Pb ages of the L chondrites. Geochim. Cosmochim. Acta 359, 191–204 (2023). DOI

Heymann, D. On the origin of hypersthene chondrites: ages and shock effects of black chondrites. Icarus 6, 189–221 (1967). DOI

Marti, K. & Graf, T. Cosmic-ray exposure history of ordinary chondrites. Annu. Rev. Earth Planet. Sci. 20, 221–243 (1992). DOI

Rubin, A. E. Metallic copper in ordinary chondrites. Meteoritics 29, 93–98 (1994). DOI

Bischoff, A., Schleiting, M. & Patzek, M. Shock stage distribution of 2280 ordinary chondrites—can bulk chondrites with a shock stage of S6 exist as individual rocks? Meteorit. Planet. Sci. 54, 2189–2202 (2019). DOI

Korochantseva, E. V. et al. L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron DOI

Haack, H., Farinella, P., Scott, E. R. D. & Keil, K. Meteoritic, asteroidal, and theoretical constraints on the 500 Ma disruption of the L chondrite parent body. Icarus 119, 182–191 (1996). DOI

Schmitz, B., Peucker-Ehrenbrink, B., Lindström, M. & Tassinari, M. Accretion rates of meteorites and cosmic dust in the Early Ordovician. Science 278, 88–90 (1997). PubMed DOI

Schmitz, B., Tassinari, M. & Peucker-Ehrenbrink, B. A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet. Sci. Lett. 194, 1–15 (2001). DOI

Terfelt, F. & Schmitz, B. Asteroid break-ups and meteorite delivery to Earth the past 500 million years. Proc. Natl Acad. Sci. 118, e2020977118 (2021). PubMed DOI PMC

Greenwood, R. C., Burbine, T. H. & Franchi, I. A. Linking asteroids and meteorites to the primordial planetesimal population. Geochim. Cosmochim. Acta 277, 377–406 (2020). DOI

Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Bottke, W. F. et al.) 297–321 (Univ. Arizona Press, 2015).

Gaffey, M. J. et al. Mineralogical variations within the S-type asteroid class. Icarus 106, 573–602 (1993). DOI

Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011). PubMed DOI

Vernazza, P. et al. Multiple and fast: the accretion of ordinary chondrite parent bodies. Astrophys. J. 791, 120 (2014). DOI

Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature https://doi.org/10.1038/s41586-024-08006-7 (2024).

Pieters, C. M. and Hiroi, T. RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility. In 35th Lunar and Planetary Science Conference, abstract no. 1720 (2004).

Milliken, R. E., Hiroi, T. & Patterson, W., The NASA Reflectance Experiment Laboratory (RELAB) Facility: Past, Present, and Future. In 47th Lunar and Planetary Science Conference, LPI Contribution No. 1903, p. 2058 (2016).

Brunetto, R. et al. Modeling asteroid surfaces from observations and irradiation experiments: The case of 832 Karin. Icarus 184, 327–337 (2006). DOI

Shkuratov, Y., Starukhina, L., Hoffmann, H. & Arnold, G. A model of spectral albedo of particulate surfaces: implications for optical properties of the moon. Icarus 137, 235–246 (1999). DOI

Binzel, R. P. et al. Compositional distributions and evolutionary processes for the near-Earth object population: Results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus 324, 41–76 (2019). DOI

Gaffey, M. J. & Fieber-Beyer, S. K., Is the (20) Massalia family the source of the L-chondrites? In 50th Lunar and Planetary Science Conference, no. 2132, id. 1441 (2019).

Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018). DOI

Nesvorný, D., Bottke, W. F., Levison, H. F. & Dones, L. Recent origin of the solar system dust bands. Astrophys. J. 591, 486–497 (2003). DOI

Vokrouhlický, D., Brož, M., Bottke, W. F., Nesvorný, D. & Morbidelli, A. Yarkovsky/YORP chronology of asteroid families. Icarus 182, 118–142 (2006). DOI

Spoto, F., Milani, A. & Knežević, Z. Asteroid family ages. Icarus 257, 275–289 (2015). DOI

Marsset, M. et al. The debiased compositional distribution of MITHNEOS: global match between the near-Earth and main-belt asteroid populations, and excess of D-type near-Earth objects. Astron. J. 163, 165 (2022). DOI

Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962). DOI

Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858–860 (2008). PubMed DOI

Thomas, C. A. & Binzel, R. P. Identifying meteorite source regions through near-Earth object spectroscopy. Icarus 205, 419–429 (2010). DOI

de León, J., Licandro, J., Serra-Ricart, M., Pinilla-Alonso, & Campins, H. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astron. Astrophys. 517, A23 (2010). DOI

Dunn, T. L., Burbine, T. H., Bottke, W. F.Jr & Clark, J. P. Mineralogies and source regions of near-Earth asteroids. Icarus 222, 273–282 (2013). DOI

Ali-Lagoa, V., Müller, T. G., Usui, F. & Hasegawa, S. The AKARI IRC asteroid flux catalogue: updated diameters and albedos. Astron Astrophys. 612, A85 (2018). DOI

Alí-Lagoa, V. et al. Thermal properties of large main-belt asteroids observed by Herschel PACS. Astron. Astrophys. 638, A84 (2020). DOI

Herald, D. et al. Small Bodies Occultations Bundle V3.0. NASA Planetary Data System https://doi.org/10.26033/ap0g-wf63 (2019).

Mainzer, A. K. et al. NEOWISE Diameters and Albedos V2.0. NASA Planetary Data System https://doi.org/10.26033/18S3-2Z54 (2019).

Gail, H.-P. & Trieloff, M. Thermal history modelling of the L chondrite parent body. Astron. Astrophys. 628, A77 (2019). DOI

Love, S. G. & Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993). PubMed DOI

Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Sykes, M. Physical properties of asteroid dust bands and their sources. Icarus 181, 107–144 (2006). DOI

Gattacceca, J. et al. The Meteoritical Bulletin, No. 110. Meteorit. Planet. Sci. 57, 2102–2105 (2022). DOI

Liao, S., Huyskens, M. H., Yin, Q.-Z. & Schmitz, B. Absolute dating of the L-chondrite parent body breakup with high-precision U–Pb zircon geochronology from Ordovician limestone. Earth Planet Sci. Lett. 547, 116442 (2020). DOI

Eugster, O., Herzog, G. F., Marti, K. & Caffee, M. W. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y. Jr) 829–851 (Univ. Arizona Press, 2006).

Farley, K. A., Montanari, A., Shoemaker, E. M. & Shoemaker, C. S. Geochemical evidence for a comet shower in the Late Eocene. Science 280, 1250–1253 (1998). PubMed DOI

Schenk, P. et al. The geologically recent giant impact basins at Vesta’s South Pole. Science 336, 694–697 (2012). PubMed DOI

Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019). DOI

LSST Science Collaboration. LSST Science Book, Version 2.0. Preprint at arxiv.org/abs/0912.0201 (2009).

Colas, F. et al. FRIPON: a worldwide network to track incoming meteoroids. Astron. Astrophys. 644, A53 (2020). DOI

Spurný, P., Borovička, J. & Shrbený, L. The Žďár nad Sázavou meteorite fall: Fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery. Meteorit. Planet. Sci. 55, 376–401 (2020). DOI

Jenniskens, P. et al. The Creston, California, meteorite fall and the origin of L chondrites. Meteorit. Planet. Sci. 54, 699–720 (2019). DOI

Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010). DOI

Rayner, J. T. et al. SpeX: a medium-resolution 0.8-5.5 micron spectrograph and imager for the NASA Infrared Telescope Facility. Publ. Astron. Soc. Pac. 115, 362–382 (2003). DOI

Rivkin, A. S., Binzel, R. P. & Bus, S. J. Constraining near-Earth object albedos using near-infrared spectroscopy. Icarus 175, 175–180 (2005). DOI

Bus, S. J. & Binzel, R. P. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: the observations. Icarus 158, 106–145 (2002). DOI

Burbine, T. H. & Binzel, R. P. Small Main-Belt Asteroid Spectroscopic Survey in the near-infrared. Icarus 159, 468–499 (2002). DOI

McGraw, A. M., Reddy, V. & Sanchez, J. A. Spectroscopic characterization of the Gefion Asteroid Family: implications for L-chondrite link. Mon. Not. R. Astron. Soc. 515, 5211–5218 (2022). DOI

Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993). DOI

Britt, D. T. & Pieters, C. M. Black ordinary chondrites: an analysis of abundance and fall frequency. Meteoritics 26, 279–285 (1991). DOI

Reddy, V. et al. Chelyabinsk meteorite explains unusual spectral properties of Baptistina asteroid family. Icarus 237, 116–130 (2014). DOI

Kohout, T. et al. Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite - Insight into shock-induced changes in asteroid regoliths. Icarus 228, 78–85 (2014). DOI

Kohout, T. et al. Experimental constraints on the ordinary chondrite shock darkening caused by asteroid collisions. Astron. Astrophys. 639, A146 (2020). DOI

DeMeo, F. E. et al. Connecting asteroids and meteorites with visible and near-infrared spectroscopy. Icarus 380, 114971 (2022). DOI

Cloutis, E. A., Gaffey, M. J., Jackowski, T. L. & Reed, K. L. Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. J. Geophys. Res. 91, 11641–11653 (1986). DOI

Vernazza, P. et al. Mid-infrared spectral variability for compositionally similar asteroids: Implications for asteroid particle size distributions. Icarus 207, 800–809 (2010). DOI

Binzel, R. P. et al. Spectral properties and composition of potentially hazardous Asteroid (99942) Apophis. Icarus 200, 480–485 (2009). DOI

Dunn, T. L., McCoy, T. J., Sunshine, J. M. & McSween, H. Y. A coordinated spectral, mineralogical, and compositional study of ordinary chondrites. Icarus 208, 789–797 (2010). DOI

Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009). DOI

Nesvorný, D. et al. NEOMOD: A new orbital distribution model for near-Earth objects. Astron. J. 166, 55 (2023).

Heck, P. R., Schmitz, B., Baur, H., Halliday, A. N. & Wieler, R. Fast delivery of meteorites to Earth after a major asteroid collision. Nature 430, 323–325 (2004). PubMed DOI

Nesvorný, D., Vokrouhlický, D., Morbidelli, A. & Bottke, W. F. Asteroidal source of L chondrite meteorites. Icarus 200, 698–701 (2009). DOI

Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994). DOI

Quinn, T. R., Tremaine, S. & Duncan, M. A Three Million Year Integration of the Earth’s Orbit. Astron. J. 101, 2287 (1991). DOI

Šidlichovský, M. & Nesvorný, D. Frequency modified Fourier transform and its application to asteroids. Celest. Mech. Dyn. Astron. 65, 137–148 (1996). DOI

Vokrouhlický, D. & Farinella, P. The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for spherical bodies. Astron. J. 118, 3049–3060 (1999). DOI

Vokrouhlický, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335, 1093–1100 (1998).

Čapek, D. & Vokrouhlický, D. The YORP effect with finite thermal conductivity. Icarus 172, 526–536 (2004). DOI

Farinella, P., Vokrouhlický, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998). DOI

Holsapple, K. A. Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61. Icarus 187, 500–509 (2007). DOI

Brož, M., Vokrouhlický, D., Morbidelli, A., Nesvorný, D. & Bottke, W. F. Did the Hilda collisional family form during the late heavy bombardment? Mon. Not. R. Astron. Soc. 414, 2716–2727 (2011). DOI

Novaković, B. & Radović, V., Asteroid Families Portal. http://asteroids.matf.bg.ac.rs/fam/ (2019).

Bottke, W. F. et al. in Asteroids IV (eds Michel, P. et al.) 701–724 (Univ. Arizona Press, 2015).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

JWST sighting of decametre main-belt asteroids and view on meteorite sources

. 2025 Feb ; 638 (8049) : 74-78. [epub] 20241209

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...