JWST sighting of decametre main-belt asteroids and view on meteorite sources

. 2025 Feb ; 638 (8049) : 74-78. [epub] 20241209

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39653127
Odkazy

PubMed 39653127
DOI 10.1038/s41586-024-08480-z
PII: 10.1038/s41586-024-08480-z
Knihovny.cz E-zdroje

Asteroid discoveries are essential for planetary-defence efforts aiming to prevent impacts with Earth1, including the more frequent2 megaton explosions from decametre impactors3-6. Although large asteroids (≥100 kilometres) have remained in the main belt since their formation7, small asteroids are commonly transported to the near-Earth object (NEO) population8,9. However, owing to the lack of direct observational constraints, their size-frequency distribution (SFD)-which informs our understanding of the NEOs and the delivery of meteorite samples to Earth-varies substantially among models10-14. Here we report 138 detections of some of the smallest asteroids (≳10 metres) ever observed in the main belt, which were enabled by JWST's infrared capabilities covering the emission peaks of the asteroids15 and synthetic tracking techniques16-18. Despite small orbital arcs, we constrain the distances and phase angles of the objects using known asteroids as proxies, allowing us to derive sizes through radiometric techniques. Their SFD shows a break at about 100 metres (debiased cumulative slopes of q = -2.66 ± 0.60 and -0.97 ± 0.14 for diameters smaller and larger than roughly 100 metres, respectively), suggestive of a population driven by collisional cascade. These asteroids were sampled from several asteroid families-most probably Nysa, Polana and Massalia-according to the geometry of pointings considered here. Through further long-stare infrared observations, JWST is poised to serendipitously detect thousands of decametre-scale asteroids across the sky, examining individual asteroid families19 and the source regions of meteorites13,14 'in situ'.

Zobrazit více v PubMed

Cheng, A. F. et al. AIDA DART asteroid deflection test: planetary defense and science objectives. Planet. Space Sci. 157, 104–115 (2018). DOI

Brown, P., Spalding, R. E., ReVelle, D. O., Tagliaferri, E. & Worden, S. P. The flux of small near-Earth objects colliding with the Earth. Nature 420, 294–296 (2002). PubMed DOI

Chyba, C. F., Thomas, P. J. & Zahnle, K. J. The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361, 40–44 (1993). DOI

Chao, E. C. T., Shoemaker, E. M. & Madsen, B. M. First natural occurrence of coesite. Science 132, 220–222 (1960). PubMed DOI

Stöffler, D., Artemieva, N. A. & Pierazzo, E. Modeling the Ries-Steinheim impact event and the formation of the moldavite strewn field. Meteorit. Planet. Sci. 37, 1893–1907 (2002). DOI

Reddy, V. et al. Near-Earth asteroid 2012 TC4 observing campaign: results from a global planetary defense exercise. Icarus 326, 133–150 (2019). DOI

Bottke, W. F. et al. The fossilized size distribution of the main asteroid belt. Icarus 175, 111–140 (2005). DOI

Farinella, P., Vokrouhlický, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998). DOI

Chesley, S. R. et al. Direct detection of the Yarkovsky effect by radar ranging to asteroid 6489 Golevka. Science 302, 1739–1742 (2003). PubMed DOI

Brown, P. G. et al. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503, 238–241 (2013). PubMed DOI

Harris, A. W. & Chodas, P. W. The population of near-earth asteroids revisited and updated. Icarus 365, 114452 (2021). DOI

Nesvorný, D. et al. NEOMOD 2: an updated model of Near-Earth Objects from a decade of Catalina Sky Survey observations. Icarus 411, 115922 (2024). DOI

Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature 634, 566–571 (2024). PubMed DOI

Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature 634, 561–565 (2024). PubMed DOI

Müller, T. G. et al. Asteroids seen by JWST-MIRI: radiometric size, distance, and orbit constraints. Astron. Astrophys. 670, A53 (2023). DOI

Tyson, J., Guhathakurta, P., Bernstein, G. & Hut, P. Limits on the surface density of faint Kuiper Belt objects. Bull. Am. Astron. Soc. 24, 1127 (1992).

Shao, M. et al. Finding very small near-earth asteroids using synthetic tracking. Astrophys. J. 782, 1 (2014). DOI

Burdanov, A. Y., Hasler, S. N. & de Wit, J. GPU-based framework for detecting small Solar System bodies in targeted exoplanet surveys. Mon. Not. R. Astron. Soc. 521, 4568–4578 (2023). DOI

Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Michel, P. et al.) 297–321 (Univ. Arizona Press, 2015).

Gladman, B. & Kavelaars, J. J. Kuiper Belt searches from the Palomar 5-m telescope. Astron. Astrophys. 317, L35–L38 (1997).

Bernstein, G. M. et al. The size distribution of trans-Neptunian bodies. Astron. J. 128, 1364–1390 (2004). DOI

Zhai, C. et al. Detection of a faint fast-moving near-Earth asteroid using the synthetic tracking technique. Astrophys. J. 792, 60 (2014). DOI

Heinze, A. N., Metchev, S. & Trollo, J. Digital tracking observations can discover asteroids 10 times fainter than conventional searches. Astron. J. 150, 125 (2015). DOI

Hasler, S. N. et al. Small body harvest with the Antarctic Search for Transiting Exoplanets (ASTEP) project. Mon. Not. R. Astron. Soc. 526, 3601–3609 (2023). DOI

Tedesco, E. F., Noah, P. V., Noah, M. & Price, S. D. The Supplemental IRAS Minor Planet Survey. Astron. J. 123, 1056–1085 (2002). DOI

Usui, F. et al. Asteroid catalog using Akari: AKARI/IRC mid-infrared asteroid survey. Publ. Astron. Soc. Jpn 63, 1117–1138 (2011). DOI

Mainzer, A. et al. Preliminary results from NEOWISE: an enhancement to the Wide-field Infrared Survey Explorer for Solar System science. Astrophys. J. 731, 53 (2011). DOI

Rieke, G. H. et al. The mid-infrared instrument for the James Webb Space Telescope, VII: the MIRI detectors. Publ. Astron. Soc. Pac. 127, 665 (2015). DOI

Dohnanyi, J. S. Collisional model of asteroids and their debris. J. Geophys. Res. 74, 2531–2554 (1969). DOI

Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999). DOI

Brož, M. et al. Source regions of carbonaceous meteorites and near-Earth objects. Astron. Astrophys. 689, A183 (2024). DOI

Gladman, B. J. et al. On the asteroid belt’s orbital and size distribution. Icarus 202, 104–118 (2009). DOI

Ryan, E. L. et al. The kilometer-sized Main Belt asteroid population revealed by Spitzer. Astron. Astrophys. 578, A42 (2015). DOI

Maeda, N. et al. Size distributions of bluish and reddish small main-belt asteroids obtained by Subaru/Hyper Suprime-Cam. Astron. J. 162, 280 (2021). DOI

García-Martín, P. et al. Hubble Asteroid Hunter. III. Physical properties of newly found asteroids. Astron. Astrophys. 683, A122 (2024). DOI

Vokrouhlický, D. A complete linear model for the Yarkovsky thermal force on spherical asteroid fragments. Astron. Astrophys. 344, 362–366 (1999).

Rubincam, D. P. Radiative spin-up and spin-down of small asteroids. Icarus 148, 2–11 (2000). DOI

Granvik, M. et al. Super-catastrophic disruption of asteroids at small perihelion distances. Nature 530, 303–306 (2016). PubMed DOI

Nesvorný, D. et al. NEOMOD: a new orbital distribution model for near-Earth objects. Astron. J. 166, 55 (2023). DOI

Redfield, S. et al. Report of the Working Group on Strategic Exoplanet Initiatives with HST and JWST. Preprint at https://arxiv.org/abs/2404.02932 (2024).

TRAPPIST-1 JWST Community Initiative A roadmap for the atmospheric characterization of terrestrial exoplanets with JWST. Nat. Astron. 8, 810–818 (2024). DOI

Greene, T. P. et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST. Nature 618, 39–42 (2023). PubMed DOI

Zieba, S. et al. No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c. Nature 620, 746–749 (2023). PubMed DOI PMC

Farinella, P., Davis, D. R., Paolicchi, P., Cellino, A. & Zappala, V. Asteroid collisional evolution—an integrated model for the evolution of asteroid rotation rates. Astron. Astrophys. 253, 604–614 (1992).

Bottke, W. F. Jr, William, F., Vokrouhlický, D., Rubincam, D. P. & Nesvorný, D. The Yarkovsky and YORP effects: implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34, 157–191 (2006). DOI

Carruba, V. et al. The population of rotational fission clusters inside asteroid collisional families. Nat. Astron. 4, 83–88 (2020). DOI

Polishook, D. Spin axes and shape models of asteroid pairs: fingerprints of YORP and a path to the density of rubble piles. Icarus 241, 79–96 (2014). DOI

Dinsmore, J. T. & de Wit, J. Constraining the interiors of asteroids through close encounters. Mon. Not. R. Astron. Soc. 520, 3459–3475 (2023). DOI

LSST Science Collaboration et al. LSST Science Book, Version 2.0. Preprint at https://arxiv.org/abs/0912.0201 (2009).

Mainzer, A. K. et al. The Near-Earth Object Surveyor mission. Planet. Sci. J. 4, 224 (2023). DOI

Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980). PubMed DOI

Metropolis, N. & Ulam, S. The Monte Carlo method. J. Am. Stat. Assoc. 44, 335–341 (1949). PubMed DOI

Bradley, L. astropy/photutils: 1.8.0. Zenodo https://doi.org/10.5281/zenodo.7946442 (2023).

Parrott, D. Tycho tracker: a new tool to facilitate the discovery and recovery of asteroids using synthetic tracking and modern GPU hardware. J. JAAVSO 48, 262 (2020).

Brown, M. E., Kulkarni, S. R. & Liggett, T. J. An analysis of the statistics of the Hubble Space Telescope Kuiper belt object search. Astrophys. J. Lett. 490, L119–L122 (1997). DOI

Cochran, A. L., Levison, H. F., Tamblyn, P., Stern, S. A. & Duncan, M. J. The calibration of the Hubble Space Telescope Kuiper belt object search: setting the record straight. Astrophys. J. Lett. 503, L89–L93 (1998). DOI

Hoffmann, T. et al. Debiasing astro-photometric observations with corrections using statistics (DePhOCUS). Icarus 426, 116366 (2025). DOI

Harris, A. W. A thermal model for near-Earth asteroids. Icarus 131, 291–301 (1998). DOI

Masiero, J. R. et al. Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters. Astrophys. J. 741, 68 (2011). DOI

Alí-Lagoa, V. & Delbo, M. Sizes and albedos of Mars-crossing asteroids from WISE/NEOWISE data. Astron. Astrophys. 603, A55 (2017). DOI

Alí-Lagoa, V., Müller, T. G., Usui, F. & Hasegawa, S. The AKARI IRC asteroid flux catalogue: updated diameters and albedos. Astron. Astrophys. 612, A85 (2018). DOI

Wolters, S. D., Green, S. F., McBride, N. & Davies, J. K. Thermal infrared and optical observations of four near-Earth asteroids. Icarus 193, 535–552 (2008). DOI

Mainzer, A. et al. NEOWISE observations of near-Earth objects: preliminary results. Astrophys. J. 743, 156 (2011). DOI

Grav, T. et al. WISE/NEOWISE observations of the Hilda population: preliminary results. Astrophys. J. 744, 197 (2012). DOI

Vilenius, E. et al. “TNOs are Cool”: a survey of the trans-Neptunian region. VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper belt objects. Astron. Astrophys. 541, A94 (2012). DOI

Pravec, P. & Harris, A. W. Fast and slow rotation of asteroids. Icarus 148, 12–20 (2000). DOI

Lebofsky, L. A. & Spencer, J. R. in Asteroids II (eds Binzel, R. P. et al.) 128–147 (Univ. Arizona Press, 1989).

Harris, A. W. & Lagerros, J. S. V. in Asteroids III (eds Bottke, W. F. Jr et al.) 205–218 (Univ. Arizona Press, 2002).

Mainzer, A. et al. The population of tiny near-Earth objects observed by NEOWISE. Astrophys. J. 784, 110 (2014). DOI

Fenucci, M., Novaković, B. & Marčeta, D. The low surface thermal inertia of the rapidly rotating near-Earth asteroid 2016 GE1. Astron. Astrophys. 675, A134 (2023). DOI

DeMeo, F. E. & Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014). PubMed DOI

Burdanov, A. Y. et al. SPECULOOS Northern Observatory: searching for red worlds in the northern skies. Publ. Astron. Soc. Pac. 134, 105001 (2022). DOI

Delrez, L. et al. SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs. Proc. SPIE 10700, 446–466 (2018).

Jehin, E. et al. Trappist: transiting planets and planetesimals small telescope. Messenger 145, 2–6 (2011).

Mommert, M. PHOTOMETRYPIPELINE: an automated pipeline for calibrated photometry. Astron Comput. 18, 47–53 (2017). DOI

Levine, S. E. et al. Status and performance of the Discovery Channel Telescope during commissioning. Proc. SPIE 8444, 430–444 (2012).

Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020). PubMed DOI PMC

Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). DOI

Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013). DOI

Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018). DOI

Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). PubMed DOI PMC

The pandas development team. pandas-dev/pandas: Pandas. Zenodo https://doi.org/10.5281/zenodo.3509134 (2024).

McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 56–61 (SciPy, 2010).

Ginsburg, A. et al. astroquery: an astronomical web-querying package in Python. Astron. J. 157, 98 (2019). DOI

Christensen, E. J. et al. Status of the Catalina Sky Survey. In Proc. Asteroids, Comets, Meteors Conference 2587 (LPI Contributions, 2023).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...