Young asteroid families as the primary source of meteorites
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, historické články
PubMed
39415066
DOI
10.1038/s41586-024-08006-7
PII: 10.1038/s41586-024-08006-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
Understanding the origin of bright shooting stars and their meteorite samples is among the most ancient of astronomy-related questions, which at larger scales has human consequences1-3. As of today, only approximately 6% of meteorite falls have been firmly linked to their sources (Moon, Mars or asteroid (4) Vesta4-6). Here we show that approximately 70% of meteorites originate from three recent break-ups of D > 30 km asteroids that occurred 5.8, 7.6 and less than about 40 Myr ago. These break-ups, including the well-known Karin family7, took place in the prominent yet old Koronis and Massalia families and are at the origin of the dominance of H and L ordinary chondrites among meteorite falls. These young families are distinguished among all main belt asteroids by having a uniquely high abundance of small fragments. Their size-frequency distribution remained steep for a few tens of millions of years, exceeding temporarily the production of metre-sized fragments by the largest old asteroid families (for example, Flora and Vesta). Supporting evidence includes the existence of associated dust bands8-10, the cosmic-ray exposure ages of H-chondrite meteorites11,12 and the distribution of the pre-atmospheric orbits of meteorites13-15.
Aix Marseille University CNRS CNES LAM Institut Origines Marseille France
Charles University Faculty of Mathematics and Physics Institute of Astronomy Prague Czech Republic
Department of Earth Atmospheric and Planetary Sciences MIT Cambridge MA USA
Department of Space Studies Southwest Research Institute Boulder CO USA
Zobrazit více v PubMed
Chladni, E. F. F. Über den Ursprung der von Pallas Gefundenen und anderer ihr ähnlicher Eisenmassen, und Über Einige Damit in Verbindung stehende Naturerscheinungen (Johan Friedrich Hartknoch, 1794).
Biot, J.-B. Vorläufige Nachricht von dem Steinregen zu l’Aigle, am 26sten April 1803. Ann. Phys. 15, 74–76 (1803). DOI
Kulik, L. A. Otčet meteoritičeskoj ekspedicii o rabotach proizvedennych s 19 Maja 1921 g. po 29 Nojabrja 1922 g. Izv. Ross. Akad. Nauk 16, 391–410 (1922).
Marvin, U. B. The discovery and initial characterization of Allan Hills 81005: the first lunar meteorite. Geophys. Res. Lett. 10, 775–778 (1983). DOI
Treiman, A. H., Gleason, J. D. & Bogard, D. D. The SNC meteorites are from Mars. Planet. Space Sci. 48, 1213–1230 (2000). DOI
Thomas, P. C. et al. Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science 277, 1492–1495 (1997). DOI
Nesvorný, D., Bottke, J., William, F., Dones, L. & Levison, H. F. The recent breakup of an asteroid in the main-belt region. Nature 417, 720–771 (2002). PubMed DOI
Sykes, M. V. Zodiacal dust bands: their relation to asteroid families. Icarus 85, 267–289 (1990). DOI
Reach, W. T., Franz, B. A. & Weiland, J. L. The three-dimensional structure of the zodiacal dust bands. Icarus 127, 461–484 (1997). DOI
Nesvorný, D., Bottke, W. F., Levison, H. F. & Dones, L. Recent origin of the Solar System dust bands. Astrophys. J. 591, 486–497 (2003). DOI
Graf, T. & Marti, K. Collisional history of H chondrites. J. Geophys. Res. 100, 21247–21264 (1995). DOI
Eugster, O., Herzog, G. F., Marti, K. & Caffee, M. W. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 829 (Univ. Arizona Press, 2006).
Spurný, P., Borovička, J. & Shrbený, L. The Žďár nad Sázavou meteorite fall: fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery. Meteorit. Planet. Sci. 55, 376–401 (2020). DOI
Brown, P., Wiegert, P., Clark, D. & Tagliaferri, E. Orbital and physical characteristics of meter-scale impactors from airburst observations. Icarus 266, 96–111 (2016). DOI
Jenniskens, P. et al. CAMS newly detected meteor showers and the sporadic background. Icarus 266, 384–409 (2016). DOI
Bottke, W. F. et al. Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156, 399–433 (2002). DOI
Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018). DOI
Nesvorný, D. et al. NEOMOD: a new orbital distribution model for near-Earth objects. Astron. J. 166, 55 (2023). DOI
Binzel, R. P., Bus, S. J., Burbine, T. H. & Sunshine, J. M. Spectral properties of near-Earth asteroids: evidence for sources of ordinary chondrite meteorites. Science 273, 946–948 (1996). PubMed DOI
Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858–860 (2008). PubMed DOI
Marsset, M. et al. The debiased compositional distribution of MITHNEOS: global match between the near-Earth and main-belt asteroid populations, and excess of D-type near-Earth objects. Astron. J. 163, 165 (2022). DOI
Farinella, P., Vokrouhlický, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998). DOI
Bus, S. J. & Binzel, R. P. Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus 158, 146–177 (2002). DOI
DeMeo, F. E., Binzel, R. P., Slivan, S. M. & Bus, S. J. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202, 160–180 (2009). DOI
Vernazza, P. et al. Multiple and fast: the accretion of ordinary chondrite parent bodies. Astrophys. J. 791, 120 (2014). DOI
Vernazza, P. et al. Compositional homogeneity of CM parent bodies. Astron. J. 152, 54 (2016). DOI
de León, J., Licandro, J., Serra-Ricart, M., Pinilla-Alonso, N. & Campins, H. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astron. Astrophys. 517, A23 (2010). DOI
Molnar, L. A. & Haegert, M. J. Details of Recent Collisions of Asteroids 832 Karin and 158 Koronis. In Proc. AAS/Division for Planetary Sciences Meeting, 41, 27.05 (2009).
Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Sykes, M. Physical properties of asteroid dust bands and their sources. Icarus 181, 107–144 (2006). DOI
Flynn, G. J., Durda, D. D., Sandel, L. E., Kreft, J. W. & Strait, M. M. Dust production from the hypervelocity impact disruption of the Murchison hydrous CM2 meteorite: implications for the disruption of hydrous asteroids and the production of interplanetary dust. Planet. Space Sci. 57, 119–126 (2009). DOI
Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009). DOI
Campo Bagatin, A., Cellino, A., Davis, D. R., Farinella, P. & Paolicchi, P. Wavy size distributions for collisional systems with a small-size cutoff. Planet. Space Sci. 42, 1079–1092 (1994). DOI
O’Brien, D. P. & Greenberg, R. The collisional and dynamical evolution of the main-belt and NEA size distributions. Icarus 178, 179–212 (2005). DOI
Brož, M., Vokrouhlický, D., Morbidelli, A., Nesvorný, D. & Bottke, W. F. Did the Hilda collisional family form during the late heavy bombardment? Mon. Not. R. Astron. Soc. 414, 2716–2727 (2011). DOI
Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994). DOI
Yarkovsky, I. O. Plotnosť svetovogo efira i okazyvaemoe im soprotivlenie dviženiu (Typografia Judina, 1901).
Vokrouhlický, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335, 1093–1100 (1998).
Vokrouhlický, D. & Farinella, P. The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for spherical bodies. Astron. J. 118, 3049–3060 (1999). DOI
Rubincam, D. P. Radiative spin-up and spin-down of small asteroids. Icarus 148, 2–11 (2000). DOI
Čapek, D. & Vokrouhlický, D. The YORP effect with finite thermal conductivity. Icarus 172, 526–536 (2004). DOI
Gattacceca, J. et al. The Meteoritical Bulletin, No. 110. Meteorit. Planet. Sci. 57, 2102–2105 (2022). DOI
Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature https://doi.org/10.1038/s41586-024-08007-6 (2024).
Meier, M. Meteorite Orbits www.meteoriteorbits.info/ (2023).
Farley, K. A., Vokrouhlický, D., Bottke, W. F. & Nesvorný, D. A late Miocene dust shower from the break-up of an asteroid in the main belt. Nature 439, 295–297 (2006). PubMed DOI
Chesley, S. R., Chodas, P. W., Milani, A., Valsecchi, G. B. & Yeomans, D. K. Quantifying the risk posed by potential Earth impacts. Icarus 159, 423–432 (2002). DOI
Lauretta, D. S. et al. The unexpected surface of asteroid (101955) Bennu. Nature 568, 55–60 (2019). PubMed DOI PMC
Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top-shaped rubble pile. Science 364, 268–272 (2019). PubMed DOI
Novaković, B., Tsiganis, K. & Knežević, Z. Chaotic transport and chronology of complex asteroid families. Mon. Not. R. Astron. Soc. 402, 1263–1272 (2010). DOI
Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010). DOI
Bottke, W. F. et al. in Asteroids IV (eds Michel, P. et al.) 701–724 (Univ. Arizona Press, 2015).
Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Michel, P. et al.) 297–321 (Univ. Arizona Press, 2015).
Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999). DOI
Bottke, W. F. et al. Interpreting the cratering histories of Bennu, Ryugu, and other spacecraft-explored asteroids. Astron. J. 160, 14 (2020). DOI
Vernazza, P. et al. The impact crater at the origin of the Julia family detected with VLT/SPHERE? Astron. Astrophys. 618, A154 (2018). DOI
Ševeček, P. et al. SPH/N-Body simulations of small (D = 10 km) asteroidal breakups and improved parametric relations for Monte-Carlo collisional models. Icarus 296, 239–256 (2017). DOI
Harris, A. W. et al. in Asteroids IV (eds Michel, P. et al.) 835–854 (Univ. Arizona Press, 2015).
O’Brien, D. P. et al. Constraining the cratering chronology of Vesta. Planet. Space Sci. 103, 131–142 (2014). DOI
Marchi, S. et al. The violent collisional history of asteroid 4 Vesta. Science 336, 690 (2012). PubMed DOI
Brož, M., Chrenko, O., Nesvorný, D. & Dauphas, N. Early terrestrial planet formation by torque-driven convergent migration of planetary embryos. Nat. Astron. 5, 898–902 (2021). DOI
Love, S. G. & Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993). PubMed DOI
Carruba, V., Nesvorný, D. & Vokrouhlický, D. Detection of the YORP effect for small asteroids in the Karin cluster. Astron. J. 151, 164 (2016). DOI
Quinn, T. R., Tremaine, S. & Duncan, M. A three million year integration of the Earth’s orbit. Astron. J. 101, 2287–2305 (1991). DOI
Gradie, J. C., Chapman, C. R. & Tedesco, E. F. in Asteroids II (eds Binzel, R. P. et al.) 316–335 (Univ. Arizona Press, 1989).
Harris, A. W. & Chodas, P. W. The population of near-Earth asteroids revisited and updated. Icarus 365, 114452 (2021). DOI