Young asteroid families as the primary source of meteorites

. 2024 Oct ; 634 (8034) : 566-571. [epub] 20241016

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, historické články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39415066
Odkazy

PubMed 39415066
DOI 10.1038/s41586-024-08006-7
PII: 10.1038/s41586-024-08006-7
Knihovny.cz E-zdroje

Understanding the origin of bright shooting stars and their meteorite samples is among the most ancient of astronomy-related questions, which at larger scales has human consequences1-3. As of today, only approximately 6% of meteorite falls have been firmly linked to their sources (Moon, Mars or asteroid (4) Vesta4-6). Here we show that approximately 70% of meteorites originate from three recent break-ups of D > 30 km asteroids that occurred 5.8, 7.6 and less than about 40 Myr ago. These break-ups, including the well-known Karin family7, took place in the prominent yet old Koronis and Massalia families and are at the origin of the dominance of H and L ordinary chondrites among meteorite falls. These young families are distinguished among all main belt asteroids by having a uniquely high abundance of small fragments. Their size-frequency distribution remained steep for a few tens of millions of years, exceeding temporarily the production of metre-sized fragments by the largest old asteroid families (for example, Flora and Vesta). Supporting evidence includes the existence of associated dust bands8-10, the cosmic-ray exposure ages of H-chondrite meteorites11,12 and the distribution of the pre-atmospheric orbits of meteorites13-15.

Zobrazit více v PubMed

Chladni, E. F. F. Über den Ursprung der von Pallas Gefundenen und anderer ihr ähnlicher Eisenmassen, und Über Einige Damit in Verbindung stehende Naturerscheinungen (Johan Friedrich Hartknoch, 1794).

Biot, J.-B. Vorläufige Nachricht von dem Steinregen zu l’Aigle, am 26sten April 1803. Ann. Phys. 15, 74–76 (1803). DOI

Kulik, L. A. Otčet meteoritičeskoj ekspedicii o rabotach proizvedennych s 19 Maja 1921 g. po 29 Nojabrja 1922 g. Izv. Ross. Akad. Nauk 16, 391–410 (1922).

Marvin, U. B. The discovery and initial characterization of Allan Hills 81005: the first lunar meteorite. Geophys. Res. Lett. 10, 775–778 (1983). DOI

Treiman, A. H., Gleason, J. D. & Bogard, D. D. The SNC meteorites are from Mars. Planet. Space Sci. 48, 1213–1230 (2000). DOI

Thomas, P. C. et al. Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science 277, 1492–1495 (1997). DOI

Nesvorný, D., Bottke, J., William, F., Dones, L. & Levison, H. F. The recent breakup of an asteroid in the main-belt region. Nature 417, 720–771 (2002). PubMed DOI

Sykes, M. V. Zodiacal dust bands: their relation to asteroid families. Icarus 85, 267–289 (1990). DOI

Reach, W. T., Franz, B. A. & Weiland, J. L. The three-dimensional structure of the zodiacal dust bands. Icarus 127, 461–484 (1997). DOI

Nesvorný, D., Bottke, W. F., Levison, H. F. & Dones, L. Recent origin of the Solar System dust bands. Astrophys. J. 591, 486–497 (2003). DOI

Graf, T. & Marti, K. Collisional history of H chondrites. J. Geophys. Res. 100, 21247–21264 (1995). DOI

Eugster, O., Herzog, G. F., Marti, K. & Caffee, M. W. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 829 (Univ. Arizona Press, 2006).

Spurný, P., Borovička, J. & Shrbený, L. The Žďár nad Sázavou meteorite fall: fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery. Meteorit. Planet. Sci. 55, 376–401 (2020). DOI

Brown, P., Wiegert, P., Clark, D. & Tagliaferri, E. Orbital and physical characteristics of meter-scale impactors from airburst observations. Icarus 266, 96–111 (2016). DOI

Jenniskens, P. et al. CAMS newly detected meteor showers and the sporadic background. Icarus 266, 384–409 (2016). DOI

Bottke, W. F. et al. Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156, 399–433 (2002). DOI

Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018). DOI

Nesvorný, D. et al. NEOMOD: a new orbital distribution model for near-Earth objects. Astron. J. 166, 55 (2023). DOI

Binzel, R. P., Bus, S. J., Burbine, T. H. & Sunshine, J. M. Spectral properties of near-Earth asteroids: evidence for sources of ordinary chondrite meteorites. Science 273, 946–948 (1996). PubMed DOI

Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858–860 (2008). PubMed DOI

Marsset, M. et al. The debiased compositional distribution of MITHNEOS: global match between the near-Earth and main-belt asteroid populations, and excess of D-type near-Earth objects. Astron. J. 163, 165 (2022). DOI

Farinella, P., Vokrouhlický, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998). DOI

Bus, S. J. & Binzel, R. P. Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus 158, 146–177 (2002). DOI

DeMeo, F. E., Binzel, R. P., Slivan, S. M. & Bus, S. J. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202, 160–180 (2009). DOI

Vernazza, P. et al. Multiple and fast: the accretion of ordinary chondrite parent bodies. Astrophys. J. 791, 120 (2014). DOI

Vernazza, P. et al. Compositional homogeneity of CM parent bodies. Astron. J. 152, 54 (2016). DOI

de León, J., Licandro, J., Serra-Ricart, M., Pinilla-Alonso, N. & Campins, H. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astron. Astrophys. 517, A23 (2010). DOI

Molnar, L. A. & Haegert, M. J. Details of Recent Collisions of Asteroids 832 Karin and 158 Koronis. In Proc. AAS/Division for Planetary Sciences Meeting, 41, 27.05 (2009).

Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Sykes, M. Physical properties of asteroid dust bands and their sources. Icarus 181, 107–144 (2006). DOI

Flynn, G. J., Durda, D. D., Sandel, L. E., Kreft, J. W. & Strait, M. M. Dust production from the hypervelocity impact disruption of the Murchison hydrous CM2 meteorite: implications for the disruption of hydrous asteroids and the production of interplanetary dust. Planet. Space Sci. 57, 119–126 (2009). DOI

Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009). DOI

Campo Bagatin, A., Cellino, A., Davis, D. R., Farinella, P. & Paolicchi, P. Wavy size distributions for collisional systems with a small-size cutoff. Planet. Space Sci. 42, 1079–1092 (1994). DOI

O’Brien, D. P. & Greenberg, R. The collisional and dynamical evolution of the main-belt and NEA size distributions. Icarus 178, 179–212 (2005). DOI

Brož, M., Vokrouhlický, D., Morbidelli, A., Nesvorný, D. & Bottke, W. F. Did the Hilda collisional family form during the late heavy bombardment? Mon. Not. R. Astron. Soc. 414, 2716–2727 (2011). DOI

Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994). DOI

Yarkovsky, I. O. Plotnosť svetovogo efira i okazyvaemoe im soprotivlenie dviženiu (Typografia Judina, 1901).

Vokrouhlický, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335, 1093–1100 (1998).

Vokrouhlický, D. & Farinella, P. The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for spherical bodies. Astron. J. 118, 3049–3060 (1999). DOI

Rubincam, D. P. Radiative spin-up and spin-down of small asteroids. Icarus 148, 2–11 (2000). DOI

Čapek, D. & Vokrouhlický, D. The YORP effect with finite thermal conductivity. Icarus 172, 526–536 (2004). DOI

Gattacceca, J. et al. The Meteoritical Bulletin, No. 110. Meteorit. Planet. Sci. 57, 2102–2105 (2022). DOI

Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature https://doi.org/10.1038/s41586-024-08007-6 (2024).

Meier, M. Meteorite Orbits www.meteoriteorbits.info/ (2023).

Farley, K. A., Vokrouhlický, D., Bottke, W. F. & Nesvorný, D. A late Miocene dust shower from the break-up of an asteroid in the main belt. Nature 439, 295–297 (2006). PubMed DOI

Chesley, S. R., Chodas, P. W., Milani, A., Valsecchi, G. B. & Yeomans, D. K. Quantifying the risk posed by potential Earth impacts. Icarus 159, 423–432 (2002). DOI

Lauretta, D. S. et al. The unexpected surface of asteroid (101955) Bennu. Nature 568, 55–60 (2019). PubMed DOI PMC

Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top-shaped rubble pile. Science 364, 268–272 (2019). PubMed DOI

Novaković, B., Tsiganis, K. & Knežević, Z. Chaotic transport and chronology of complex asteroid families. Mon. Not. R. Astron. Soc. 402, 1263–1272 (2010). DOI

Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010). DOI

Bottke, W. F. et al. in Asteroids IV (eds Michel, P. et al.) 701–724 (Univ. Arizona Press, 2015).

Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Michel, P. et al.) 297–321 (Univ. Arizona Press, 2015).

Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999). DOI

Bottke, W. F. et al. Interpreting the cratering histories of Bennu, Ryugu, and other spacecraft-explored asteroids. Astron. J. 160, 14 (2020). DOI

Vernazza, P. et al. The impact crater at the origin of the Julia family detected with VLT/SPHERE? Astron. Astrophys. 618, A154 (2018). DOI

Ševeček, P. et al. SPH/N-Body simulations of small (D = 10 km) asteroidal breakups and improved parametric relations for Monte-Carlo collisional models. Icarus 296, 239–256 (2017). DOI

Harris, A. W. et al. in Asteroids IV (eds Michel, P. et al.) 835–854 (Univ. Arizona Press, 2015).

O’Brien, D. P. et al. Constraining the cratering chronology of Vesta. Planet. Space Sci. 103, 131–142 (2014). DOI

Marchi, S. et al. The violent collisional history of asteroid 4 Vesta. Science 336, 690 (2012). PubMed DOI

Brož, M., Chrenko, O., Nesvorný, D. & Dauphas, N. Early terrestrial planet formation by torque-driven convergent migration of planetary embryos. Nat. Astron. 5, 898–902 (2021). DOI

Love, S. G. & Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993). PubMed DOI

Carruba, V., Nesvorný, D. & Vokrouhlický, D. Detection of the YORP effect for small asteroids in the Karin cluster. Astron. J. 151, 164 (2016). DOI

Quinn, T. R., Tremaine, S. & Duncan, M. A three million year integration of the Earth’s orbit. Astron. J. 101, 2287–2305 (1991). DOI

Gradie, J. C., Chapman, C. R. & Tedesco, E. F. in Asteroids II (eds Binzel, R. P. et al.) 316–335 (Univ. Arizona Press, 1989).

Harris, A. W. & Chodas, P. W. The population of near-Earth asteroids revisited and updated. Icarus 365, 114452 (2021). DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

JWST sighting of decametre main-belt asteroids and view on meteorite sources

. 2025 Feb ; 638 (8049) : 74-78. [epub] 20241209

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...