Rapid MALDI-MS/MS-Based Profiling of Lipid A Species from Gram-Negative Bacteria Utilizing Trapped Ion Mobility Spectrometry and mzmine

. 2025 Apr 15 ; 97 (14) : 7781-7788. [epub] 20250401

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40167996

Lipid A, a crucial component of lipopolysaccharides (LPS), plays a pivotal role in the pathogenesis of Gram-negative bacteria. Lipid A patterns are recognized by mammals and can induce immunostimulatory effects. However, the outcome of the interaction is highly dependent on the chemical composition of individual lipid A species. The diversity of potential fatty acyl and polar headgroup combinations in this complex saccharolipid presents a significant analytical challenge. Current mass spectrometry (MS)-based lipid A methods are focused on either direct matrix-assisted laser desorption/ionization (MALDI)-MS screening or comprehensive structural elucidation by tandem mass spectrometry (MS/MS) hyphenated with separation techniques. In this study, we developed an alternative workflow for rapid lipid A profiling covering the entire analysis pipeline from sample preparation to data analysis. This workflow is based on microextraction and subsequent MALDI-MS/MS analysis of uropathogenic Escherichia coli utilizing trapped ion mobility spectrometry (TIMS), followed by mzmine data processing. The additional TIMS dimension served for enhanced sensitivity, selectivity, and structural elucidation through mobility-resolved fragmentation via parallel accumulation-serial fragmentation (PASEF) in parallel reaction monitoring (prm)-mode. Furthermore, mzmine enabled automated MS/MS acquisition by adapting the spatial ion mobility-scheduled exhaustive fragmentation (SIMSEF) strategy for MALDI spot analysis. It also facilitated robust lipid A annotation through a newly developed extension of the rule-based lipid annotation module, allowing for the custom generation of lipid classes, including specific fragmentation rules. In this study, the first publication of lipid A species' collision cross section (CCS) values is reported, which will enhance high-confidence lipid A annotation in future studies.

Zobrazit více v PubMed

Erridge C.; Bennett-Guerrero E.; Poxton I. R. Structure and function of lipopolysaccharides. Microbes Infect. 2002, 4, 837–851. 10.1016/S1286-4579(02)01604-0. PubMed DOI

Park B. S.; Song D. H.; Kim H. M.; Choi B.-S.; Lee H.; Lee J.-O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009, 458, 1191–1195. 10.1038/nature07830. PubMed DOI

Rietschel E. T.; Kirikae T.; Schade F. U.; Mamat U.; Schmidt G.; Loppnow H.; Ulmer A. J.; Zähringer U.; Seydel U.; Di Padova F. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994, 8, 217–225. 10.1096/fasebj.8.2.8119492. PubMed DOI

Matsuura M. Structural Modifications of Bacterial Lipopolysaccharide that Facilitate Gram-Negative Bacteria Evasion of Host Innate Immunity. Front. Immunol. 2013, 4, 10910.3389/fimmu.2013.00109. PubMed DOI PMC

Raetz C. R. H.; Reynolds C. M.; Trent M. S.; Bishop R. E. Lipid A modification systems in gram-negative bacteria. Annu. Rev. Biochem. 2007, 76, 295–329. 10.1146/annurev.biochem.76.010307.145803. PubMed DOI PMC

Scott A. J.; Oyler B. L.; Goodlett D. R.; Ernst R. K. Lipid A structural modifications in extreme conditions and identification of unique modifying enzymes to define the Toll-like receptor 4 structure-activity relationship. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2017, 1862, 1439–1450. 10.1016/j.bbalip.2017.01.004. PubMed DOI PMC

Steimle A.; Autenrieth I. B.; Frick J.-S. Structure and function: Lipid A modifications in commensals and pathogens. Int. J. Med. Microbiol. 2016, 306, 290–301. 10.1016/j.ijmm.2016.03.001. PubMed DOI

Ernst R. K.; Yi E. C.; Guo L.; Lim K. B.; Burns J. L.; Hackett M.; Miller S. I. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 1999, 286, 1561–1565. 10.1126/science.286.5444.1561. PubMed DOI

Imoto M.; Kusumoto S.; Shiba T.; Naoki H.; Iwashita T.; Rietschel E. T.; Wollenweber H.-W.; Galanos C.; Lüderitz O. Chemical structure of E. coli lipid A: linkage site of acyl groups in the disaccharide backbone. Tetrahedron lett. 1983, 24, 4017–4020. 10.1016/S0040-4039(00)88251-9. DOI

Froning M.; Helmer P. O.; Hayen H. Identification and structural characterization of lipid A from Escherichia coli, Pseudomonas putida and Pseudomonas taiwanensis using liquid chromatography coupled to high-resolution tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e889710.1002/rcm.8897. PubMed DOI

Sándor V.; Dörnyei Á.; Makszin L.; Kilár F.; Péterfi Z.; Kocsis B.; Kilár A. Characterization of complex, heterogeneous lipid A samples using HPLC-MS/MS technique I. Overall analysis with respect to acylation, phosphorylation and isobaric distribution. J. Mass Spectrom. 2016, 51, 1043–1063. 10.1002/jms.3839. PubMed DOI

Guan X. L.; Loh J. Y.-X.; Lizwan M.; Chan S. C. M.; Kwan J. M. C.; Lim T. P.; Koh T. H.; Hsu L.-Y.; Lee B. T. K. LipidA-IDER to Explore the Global Lipid A Repertoire of Drug-Resistant Gram-Negative Bacteria. Anal. Chem. 2023, 95, 602–611. 10.1021/acs.analchem.1c03566. PubMed DOI PMC

Okahashi N.; Ueda M.; Matsuda F.; Arita M. Analyses of Lipid A Diversity in Gram-Negative Intestinal Bacteria Using Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Metabolites 2021, 11, 19710.3390/metabo11040197. PubMed DOI PMC

Larrouy-Maumus G.; Clements A.; Filloux A.; McCarthy R. R.; Mostowy S. Direct detection of lipid A on intact Gram-negative bacteria by MALDI-TOF mass spectrometry. J. Microbiol. Methods 2016, 120, 68–71. 10.1016/j.mimet.2015.12.004. PubMed DOI PMC

Yang H.; Chandler C. E.; Jackson S. N.; Woods A. S.; Goodlett D. R.; Ernst R. K.; Scott A. J. On-Tissue Derivatization of Lipopolysaccharide for Detection of Lipid A Using MALDI-MSI. Anal. Chem. 2020, 92, 13667–13671. 10.1021/acs.analchem.0c02566. PubMed DOI PMC

Yang H.; Smith R. D.; Chandler C. E.; Johnson J. K.; Jackson S. N.; Woods A. S.; Scott A. J.; Goodlett D. R.; Ernst R. K. Lipid A Structural Determination from a Single Colony. Anal. Chem. 2022, 94, 7460–7465. 10.1021/acs.analchem.1c05394. PubMed DOI PMC

Sorensen M.; Chandler C. E.; Gardner F. M.; Ramadan S.; Khot P. D.; Leung L. M.; Farrance C. E.; Goodlett D. R.; Ernst R. K.; Nilsson E. Rapid microbial identification and colistin resistance detection via MALDI-TOF MS using a novel on-target extraction of membrane lipids. Sci. Rep. 2020, 10, 2153610.1038/s41598-020-78401-3. PubMed DOI PMC

Sándor V.; Berkics B. V.; Kilár A.; Kocsis B.; Kilár F.; Dörnyei Á. NACE-ESI-MS/MS method for separation and characterization of phosphorylation and acylation isomers of lipid A. Electrophoresis 2020, 41, 1178–1188. 10.1002/elps.201900251. PubMed DOI

Sándor V.; Űrmös B.; Aissa I.; Dörnyei Á.; Kilár A. Characterization of isomeric lipid A species from Pseudomonas aeruginosa PAO1 by non-aqueous capillary electrophoresis with positive and negative ion electrospray tandem mass spectrometry. Arab. J. Chem. 2023, 16, 10494410.1016/j.arabjc.2023.104944. DOI

Chen Y.; Lehotay S. J.; Moreau R. A. Supercritical fluid chromatography-tandem mass spectrometry for the analysis of lipid A. Anal. Methods 2013, 5, 6864–6869. 10.1039/c3ay41344f. DOI

Henderson J. C.; O’Brien J. P.; Brodbelt J. S.; Trent M. S. Isolation and chemical characterization of lipid A from gram-negative bacteria. J. Vis. Exp. 2013, 16, 5062310.3791/50623. PubMed DOI PMC

Dodds J. N.; Baker E. S. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. J. Am. Soc. Mass Spectrom. 2019, 30, 2185–2195. 10.1007/s13361-019-02288-2. PubMed DOI PMC

Ridgeway M. E.; Lubeck M.; Jordens J.; Mann M.; Park M. A. Trapped ion mobility spectrometry: A short review. Int. J. Mass Spectrom. 2018, 425, 22–35. 10.1016/j.ijms.2018.01.006. DOI

Gabelica V.; Marklund E. Fundamentals of ion mobility spectrometry. Curr. Opin. Chem. Biol. 2018, 42, 51–59. 10.1016/j.cbpa.2017.10.022. PubMed DOI

Leaptrot K. L.; May J. C.; Dodds J. N.; McLean J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nat. Commun. 2019, 10, 98510.1038/s41467-019-08897-5. PubMed DOI PMC

Paglia G.; Kliman M.; Claude E.; Geromanos S.; Astarita G. Applications of ion-mobility mass spectrometry for lipid analysis. Anal. Bioanal. Chem. 2015, 407, 4995–5007. 10.1007/s00216-015-8664-8. PubMed DOI

Zhou Z.; Tu J.; Xiong X.; Shen X.; Zhu Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility-Mass Spectrometry-Based Lipidomics. Anal. Chem. 2017, 89, 9559–9566. 10.1021/acs.analchem.7b02625. PubMed DOI

Ross D. H.; Cho J. H.; Zhang R.; Hines K. M.; Xu L. LiPydomics: A Python Package for Comprehensive Prediction of Lipid Collision Cross Sections and Retention Times and Analysis of Ion Mobility-Mass Spectrometry-Based Lipidomics Data. Anal. Chem. 2020, 92, 14967–14975. 10.1021/acs.analchem.0c02560. PubMed DOI PMC

Rudt E.; Schneider S.; Hayen H. Hyphenation of Liquid Chromatography and Trapped Ion Mobility - Mass Spectrometry for Characterization of Isomeric Phosphatidylethanolamines with Focus on N-Acylated Species. J. Am. Soc. Mass Spectrom. 2024, 35, 1584–1593. 10.1021/jasms.4c00162. PubMed DOI

Helmer P. O.; Behrens A.; Rudt E.; Karst U.; Hayen H. Hydroperoxylated vs Dihydroxylated Lipids: Differentiation of Isomeric Cardiolipin Oxidation Products by Multidimensional Separation Techniques. Anal. Chem. 2020, 92, 12010–12016. 10.1021/acs.analchem.0c02605. PubMed DOI

Scholz J.; Rudt E.; Gremme A.; Gaßmöller C. M.; Bornhorst J.; Hayen H. Hyphenation of supercritical fluid chromatography and trapped ion mobility-mass spectrometry for quantitative lipidomics. Anal. Chim. Acta 2024, 1317, 34291310.1016/j.aca.2024.342913. PubMed DOI

Kirkwood K. I.; Pratt B. S.; Shulman N.; Tamura K.; MacCoss M. J.; MacLean B. X.; Baker E. S. Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions. Nat. Protoc. 2022, 17, 2415–2430. 10.1038/s41596-022-00714-6. PubMed DOI PMC

Sans M.; Feider C. L.; Eberlin L. S. Advances in mass spectrometry imaging coupled to ion mobility spectrometry for enhanced imaging of biological tissues. Curr. Opin. Chem. Biol. 2018, 42, 138–146. 10.1016/j.cbpa.2017.12.005. PubMed DOI PMC

Rivera E. S.; Djambazova K. V.; Neumann E. K.; Caprioli R. M.; Spraggins J. M. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: A brief review and perspective. Biol. Mass Spectrom. 2020, 55, e461410.1002/jms.4614. PubMed DOI PMC

Helmer P. O.; Nordhorn I. D.; Korf A.; Behrens A.; Buchholz R.; Zubeil F.; Karst U.; Hayen H. Complementing Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Imaging with Chromatography Data for Improved Assignment of Isobaric and Isomeric Phospholipids Utilizing Trapped Ion Mobility-Mass Spectrometry. Anal. Chem. 2021, 93, 2135–2143. 10.1021/acs.analchem.0c03942. PubMed DOI

Djambazova K. V.; Klein D. R.; Migas L. G.; Neumann E. K.; Rivera E. S.; van de Plas R.; Caprioli R. M.; Spraggins J. M. Resolving the Complexity of Spatial Lipidomics Using MALDI TIMS Imaging Mass Spectrometry. Anal. Chem. 2020, 92, 13290–13297. 10.1021/acs.analchem.0c02520. PubMed DOI

Kyle J. E.; Zhang X.; Weitz K. K.; Monroe M. E.; Ibrahim Y. M.; Moore R. J.; Cha J.; Sun X.; Lovelace E. S.; Wagoner J.; Polyak S. J.; Metz T. O.; Dey S. K.; Smith R. D.; Burnum-Johnson K. E.; Baker E. S. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 2016, 141, 1649–1659. 10.1039/C5AN02062J. PubMed DOI PMC

Meier F.; Beck S.; Grassl N.; Lubeck M.; Park M. A.; Raether O.; Mann M. Parallel Accumulation-Serial Fragmentation (PASEF): Multiplying Sequencing Speed and Sensitivity by Synchronized Scans in a Trapped Ion Mobility Device. J. Proteome Res. 2015, 14, 5378–5387. 10.1021/acs.jproteome.5b00932. PubMed DOI

Meier F.; Brunner A.-D.; Koch S.; Koch H.; Lubeck M.; Krause M.; Goedecke N.; Decker J.; Kosinski T.; Park M. A.; Bache N.; Hoerning O.; Cox J.; Räther O.; Mann M. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol. Cell. Proteomics 2018, 17, 2534–2545. 10.1074/mcp.TIR118.000900. PubMed DOI PMC

Lesur A.; Schmit P.-O.; Bernardin F.; Letellier E.; Brehmer S.; Decker J.; Dittmar G. Highly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF. Anal. Chem. 2021, 93, 1383–1392. 10.1021/acs.analchem.0c03180. PubMed DOI

Rudt E.; Feldhaus M.; Margraf C. G.; Schlehuber S.; Schubert A.; Heuckeroth S.; Karst U.; Jeck V.; Meyer S. W.; Korf A.; Hayen H. Comparison of Data-Dependent Acquisition, Data-Independent Acquisition, and Parallel Reaction Monitoring in Trapped Ion Mobility Spectrometry-Time-of-Flight Tandem Mass Spectrometry-Based Lipidomics. Anal. Chem. 2023, 95, 9488–9496. 10.1021/acs.analchem.3c00440. PubMed DOI

Wolf C.; Behrens A.; Brungs C.; Mende E. D.; Lenz M.; Piechutta P. C.; Roblick C.; Karst U. Mobility-resolved broadband dissociation and parallel reaction monitoring for laser desorption/ionization-mass spectrometry-Tattoo pigment identification supported by trapped ion mobility spectrometry. Anal. Chim. Acta 2023, 1242, 34079610.1016/j.aca.2023.340796. PubMed DOI

Gruber L.; Schmidt S.; Enzlein T.; Vo H. G.; Cairns J. L.; Ucal Y.; Keller F.; Abu Sammour D.; Rudolf R.; Eckhardt M.; Iakab S. A.; Bindila L.; Hopf C.. Deep MALDI-MS Spatial ‘Omics guided by Quantum Cascade Laser Mid-infrared Imaging Microscopy bioRxiv 2023.

Heuckeroth S.; Behrens A.; Wolf C.; Fütterer A.; Nordhorn I. D.; Kronenberg K.; Brungs C.; Korf A.; Richter H.; Jeibmann A.; Karst U.; Schmid R. On-tissue dataset-dependent MALDI-TIMS-MS2 bioimaging. Nat. Commun. 2023, 14, 749510.1038/s41467-023-43298-9. PubMed DOI PMC

Mobley H. L.; Green D. M.; Trifillis A. L.; Johnson D. E.; Chippendale G. R.; Lockatell C. V.; Jones B. D.; Warren J. W. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect. Immun. 1990, 58, 1281–1289. 10.1128/iai.58.5.1281-1289.1990. PubMed DOI PMC

Schmid R.; Heuckeroth S.; Korf A.; et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023, 41, 447–449. 10.1038/s41587-023-01690-2. PubMed DOI PMC

Lerner R.; Baker D.; Schwitter C.; Neuhaus S.; Hauptmann T.; Post J. M.; Kramer S.; Bindila L. Four-dimensional trapped ion mobility spectrometry lipidomics for high throughput clinical profiling of human blood samples. Nat. Commun. 2023, 14, 93710.1038/s41467-023-36520-1. PubMed DOI PMC

Tsugawa H.; Ikeda K.; Takahashi M.; Satoh A.; Mori Y.; Uchino H.; Okahashi N.; Yamada Y.; Tada I.; Bonini P.; Higashi Y.; Okazaki Y.; Zhou Z.; Zhu Z.-J.; Koelmel J.; Cajka T.; Fiehn O.; Saito K.; Arita M.; Arita M. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020, 38, 1159–1163. 10.1038/s41587-020-0531-2. PubMed DOI

Sándor V.; Kilár A.; Kilár F.; Kocsis B.; Dörnyei Á. Characterization of complex, heterogeneous lipid A samples using HPLC-MS/MS technique III. Positive-ion mode tandem mass spectrometry to reveal phosphorylation and acylation patterns of lipid A. J. Mass Spectrom. 2018, 53, 146–161. 10.1002/jms.4046. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...