Cellular transformation promotes the incorporation of docosahexaenoic acid into the endolysosome-specific lipid bis(monoacylglycerol)phosphate in breast cancer
Jazyk angličtina Země Irsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
P30 CA093373
NCI NIH HHS - United States
R01 CA250211
NCI NIH HHS - United States
U2C ES030158
NIEHS NIH HHS - United States
PubMed
36773796
PubMed Central
PMC10589064
DOI
10.1016/j.canlet.2023.216090
PII: S0304-3835(23)00041-1
Knihovny.cz E-zdroje
- Klíčová slova
- BMP, Bis(monoacylglycerol)phosphate, Breast cancer, Lipidomics, Lysosomal membrane permeabilization, Polyunsaturated fatty acids, Reactive oxygen species,
- MeSH
- fosfáty metabolismus MeSH
- kyseliny dokosahexaenové * MeSH
- lidé MeSH
- lysofosfolipidy metabolismus MeSH
- lyzozomy metabolismus MeSH
- myši MeSH
- nádory prsu * patologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- bis(monoacylglyceryl)phosphate MeSH Prohlížeč
- fosfáty MeSH
- kyseliny dokosahexaenové * MeSH
- lysofosfolipidy MeSH
- reaktivní formy kyslíku MeSH
Bis(monoacylglycero)phosphates (BMPs), a class of lipids highly enriched within endolysosomal organelles, are key components of the lysosomal intraluminal vesicles responsible for activating sphingolipid catabolic enzymes. While BMPs are understudied relative to other phospholipids, recent reports associate BMP dysregulation with a variety of pathological states including neurodegenerative diseases and lysosomal storage disorders. Since the dramatic lysosomal remodeling characteristic of cellular transformation could impact BMP abundance and function, we employed untargeted lipidomics approaches to identify and quantify BMP species in several in vitro and in vivo models of breast cancer and comparative non-transformed cells and tissues. We observed lower BMP levels within transformed cells relative to normal cells, and consistent enrichment of docosahexaenoic acid (22:6) fatty acyl chain-containing BMP species in both human- and mouse-derived mammary tumorigenesis models. Our functional analysis points to a working model whereby 22:6 BMPs serve as reactive oxygen species scavengers in tumor cells, protecting lysosomes from oxidant-induced lysosomal membrane permeabilization. Our findings suggest that breast tumor cells might divert polyunsaturated fatty acids into BMP lipids as part of an adaptive response to protect their lysosomes from elevated reactive oxygen species levels, and raise the possibility that BMP-mediated lysosomal protection is a tumor-specific vulnerability that may be exploited therapeutically.
Department of Molecular and Cellular Biology University of California Davis Davis CA USA
West Coast Metabolomics Center UC Davis Genome Center University of California Davis Davis CA USA
Zobrazit více v PubMed
Body DR, Gray GM 1967. The isolation and characterisation of phosphatidylglycerol and a structural isomer from pig lung. Chem Phys Lipids 1, 254–263. 10.1016/0009-3084(67)90032-1 DOI
Showalter MR, Berg AL, Nagourney A, Heil H, Carraway KL 3rd, Fiehn O. 2020. The emerging and diverse roles of bis(monoacylglycero) phosphate lipids in cellular physiology and disease. Int J Mol Sci 21, 21. 10.3390/ijms21218067 PubMed DOI PMC
Schulze H, Sandhoff K, 2011. Lysosomal lipid storage diseases. Cold Spring Harb Perspect Biol 3. 10.1101/cshperspect.a004804 PubMed DOI PMC
Christie WW (2022). Bis(monoacylglycero)phosphate. The Lipid Web. https://www.lipidmaps.org/resources/lipidweb/lipidweb_html/lipids/complex/lysobpa/index.htm
Hullin-Matsuda F, Kawasaki K, Delton-Vandenbroucke I, Xu Y, Nishijima M, Lagarde M, Schlame M, Kobayashi T. 2007. De novo biosynthesis of the late endosome lipid, bis(monoacylglycero)phosphate. J Lipid Res 48, 1997–2008. 10.1194/jlr.M700154-JLR200 PubMed DOI
Pribasnig MA, Mrak I, Grabner GF, Taschler U, Knittelfelder O, Scherz B, Eichmann TO, Heier C, Grumet L, Kowaliuk J, Romauch M, Holler S, Anderl F, Wolinski H, Lass A, Breinbauer R, Marsche G, Brown JM, Zimmermann R. 2015. α/β Hydrolase Domain-containing 6 (ABHD6) Degrades the Late Endosomal/Lysosomal Lipid Bis(monoacylglycero)phosphate. J Biol Chem 290, 29869–29881. 10.1074/jbc.M115.669168 PubMed DOI PMC
Petersen NHT, Olsen OD, Groth-Pedersen L, Ellegaard A-M, Bilgin M, Redmer S, Ostenfeld MS, Ulanet D, Dovmark TH, Lønborg A, Vindeløv SD, Hanahan D, Arenz C, Ejsing CS, Kirkegaard T, Rohde M, Nylandsted J, Jäättelä M. 2013. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24, 379–393. 10.1016/j.ccr.2013.08.003 PubMed DOI
Kolter T, Sandhoff K, 2010. Lysosomal degradation of membrane lipids. FEBS Lett 584, 1700–1712. 10.1016/j.febslet.2009.10.021 PubMed DOI
Gallala HD, Sandhoff K. 2011. Biological function of the cellular lipid BMP-BMP as a key activator for cholesterol sorting and membrane digestion. Neurochem Res 36, 1594–1600. 10.1007/s11064-010-0337-6 PubMed DOI
Akgoc Z, Iosim S, Seyfried TN 2015. Bis(monoacylglycero)phosphate as a macrophage enriched phospholipid. Lipids 50, 907–912. 10.1007/s11745-015-4045-5 PubMed DOI
Brotherus J, Renkonen O, Fischer W, Herrmann J, 1974. Novel stereoconfiguration in lyso-bis-phosphatidic acid of cultured BHK-cells. Chem Phys Lipids 13, 178–182. 10.1016/0009-3084(74)90034-6 PubMed DOI
Mason RJ, Stossel TP, Vaughan M. 1972. Lipids of alveolar macrophages, polymorphonuclear leukocytes, and their phagocytic vesicles. J Clin Invest 51, 2399–2407. 10.1172/JCI107052 PubMed DOI PMC
Cochran FR, Connor JR, Roddick VL, Waite BM 1985. Lyso(bis)phosphatidic acid: a novel source of arachidonic acid for oxidative metabolism by rabbit alveolar macrophages. Biochem Biophys Res Commun 130, 800–806. 10.1016/0006-291x(85)90487-5 PubMed DOI
Wherrett JR, Huterer S. 1973. Bis-(monoacylglyceryl)-phosphate of rat and human liver: fatty acid composition and NMR spectroscopy. Lipids 8, 531–533. 10.1007/BF02531989 PubMed DOI
Wang M, Palavicini JP, Cseresznye A, Han X. 2017. Strategy for quantitative analysis of isomeric bis(monoacylglycero)phosphate and phosphatidylglycerol species by shotgun lipidomics after one-step methylation. Anal Chem 89, 8490–8495. 10.1021/acs.analchem.7b02058 PubMed DOI
Vosse C, Wienken C, Cadenas C, Hayen H. 2018. Separation and identification of phospholipids by hydrophilic interaction liquid chromatography coupled to tandem high resolution mass spectrometry with focus on isomeric phosphatidylglycerol and bis(monoacylglycero)phosphate. J Chromatogr A 1565, 105–113. 10.1016/j.chroma.2018.06.039 PubMed DOI
Rabia M, Leuzy V, Soulage C, Durand A, Fourmaux B, Errazuriz-Cerda E, Köffel R, Draeger A, Colosetti P, Jalabert A, Di Filippo M, Villard-Garon A, Bergerot C, Luquain-Costaz C, Moulin P, Rome S, Delton I, Hullin-Matsuda F, 2020. Bis(monoacylglycero)phosphate, a new lipid signature of endosome-derived extracellular vesicles. Biochimie 178, 26–38. 10.1016/j.biochi.2020.07.005 PubMed DOI
Bouvier J, Zemski Berry KA, Hullin-Matsuda F, Makino A, Michaud S, Geloën A, Murphy RC, Kobayashi T, Lagarde M, Delton-Vandenbroucke I. 2009. Selective decrease of bis(monoacylglycero)phosphate content in macrophages by high supplementation with docosahexaenoic acid. J Lipid Res 50, 243–255. 10.1194/jlr.M800300-JLR200 PubMed DOI
Meikle PJ, Duplock S, Blacklock D, Whitfield PD, Macintosh G, Hopwood JJ, Fuller M. 2008. Effect of lysosomal storage on bis(monoacylglycero)phosphate. Biochem J 411, 71–78. 10.1042/BJ20071043 PubMed DOI
Hein LK, Duplock S, Fuller M. 2013. Selective reduction of bis(monoacylglycero)phosphate ameliorates the storage burden in a THP-1 macrophage model of Gaucher disease. J Lipid Res 54, 1691–1697. 10.1194/jlr.M038232 PubMed DOI PMC
Serrano-Puebla A, Boya P, 2018. Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. Biochem Soc Trans 46, 207–215. 10.1042/BST20170130 PubMed DOI
Jäättelä M, Kallunki T. 2016. Lysosome and Cancer. Lysosomes: Biology, Diseases, and Therapeutics, 10.1002/9781118978320.ch10 DOI
Aits S, Jäättelä M. 2013. Lysosomal cell death at a glance. J Cell Sci 126, 1905–1912. 10.1242/jcs.091181 PubMed DOI
Kallunki T, Olsen OD, Jäättelä M. 2013. Cancer-associated lysosomal changes: friends or foes? Oncogene 32, 1995–2004. 10.1038/onc.2012.292 PubMed DOI
Hung YP, Teragawa C, Kosaisawe N, Gillies TE, Pargett M, Minguet M, Distor K, Rocha-Gregg BL, Coloff JL, Keibler MA, Stephanopoulos G, Yellen G, Brugge JS, Albeck JG 2017. Akt regulation of glycolysis mediates bioenergetic stability in epithelial cells. Elife 6. 10.7554/eLife.27293 PubMed DOI PMC
Pargett M, Gillies TE, Teragawa CK, Sparta B, Albeck JG 2017. Single-cell imaging of ERK signaling using fluorescent biosensors. In Methods in Molecular Biology vol 1636, pp. 35–59. Humana Press Inc. 10.1007/978-1-4939-7154-1_3 PubMed DOI PMC
Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G. 2008. Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5, 695–702. 10.1038/nmeth.1237 PubMed DOI PMC
Vincent L, Soille P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. In IEEE Transactions on Pattern Analysis and Machine Intelligence vol 13, pp. 583–598, 10.1109/34.87344 DOI
Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Burchett JM, Schuler DR, Cirrito JR, Diwan A, Lee J-M 2014. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J Neurosci 34, 9607–9620. 10.1523/JNEUROSCI.3788-13.2014 PubMed DOI PMC
Aits S, Jäättelä M, Nylandsted J. 2015. Methods for the quantification of lysosomal membrane permeabilization: a hallmark of lysosomal cell death. Methods Cell Biol 126, 261–285. 10.1016/bs.mcb.2014.10.032 PubMed DOI PMC
Siegel PM, Ryan ED, Cardiff RD, Muller WJ 1999. Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J 18, 2149–2164. 10.1093/emboj/18.8.2149 PubMed DOI PMC
Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G, Gurney A, Lewicki J, Clarke MF 2008. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells 26, 364–371. 10.1634/stemcells.2007-0440 PubMed DOI
Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF 2009. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783. 10.1038/nature07733 PubMed DOI PMC
Cajka T, Fiehn O. 2016. Increasing lipidomic coverage by selecting optimal mobile-phase modifiers in LC–MS of blood plasma. Metabolomics 12, 34. 10.1007/s11306-015-0929-x DOI
Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M. 2015. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12, 523–526. 10.1038/nmeth.3393 PubMed DOI PMC
Kind T, Liu K-H, Lee DY, DeFelice B, Meissen JK, Fiehn O. 2013. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10, 755–758. 10.1038/nmeth.2551 PubMed DOI PMC
Fan S, Kind T, Cajka T, Hazen SL, Tang WHW, Kaddurah-Daouk R, Irvin MR, Arnett DK, Barupal DK, Fiehn O. 2019. Systematic Error Removal Using Random Forest for Normalizing Large-Scale Untargeted Lipidomics Data. Anal Chem 91, 3590–3596. 10.1021/acs.analchem.8b05592 PubMed DOI PMC
Kobayashi T, Stang E, Fang KS, de Moerloose P, Parton RG, Gruenberg J. 1998. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392, 193–197. 10.1038/32440 PubMed DOI
Kittaneh M, Montero AJ, Glück S. 2013. Molecular profiling for breast cancer: a comprehensive review. Biomark Cancer 5, 61–70. 10.4137/BIC.S9455 PubMed DOI PMC
Wartosch L, Bright NA, Luzio JP 2015. Lysosomes. Curr Biol 25, R315–316. 10.1016/j.cub.2015.02.027 PubMed DOI
Wang T, Ming Z, Xiaochun W, Hong W, 2011. Rab7: role of its protein interaction cascades in endo-lysosomal traffic. Cell Signal 23, 516–521. 10.1016/j.cellsig.2010.09.012 PubMed DOI
Kobayashi T, Beuchat MH, Lindsay M, Frias S, Palmiter RD, Sakuraba H, Parton RG, Gruenberg J. 1999. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol 1, 113–118. 10.1038/10084 PubMed DOI
Tsugawa H, Ikeda K, Takahashi M, Satoh A, Mori Y, Uchino H, Okahashi N, Yamada Y, Tada I, Bonini P, Higashi Y, Okazaki Y, Zhou Z, Zhu Z-J, Koelmel J, Cajka T, Fiehn O, Saito K, Arita Masanori, Arita Makoto, 2020. A lipidome atlas in MS-DIAL 4. Nat Biotechnol 38, 1159–1163. 10.1038/s41587-020-0531-2 PubMed DOI
Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ 1992. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci U S A 89, 10578–10582. 10.1073/pnas.89.22.10578 PubMed DOI PMC
Ingalla EQ, Miller JK, Wald JH, Workman HC, Kaur RP, Yen L, Fry WHD, Borowsky AD, Young LJT, Sweeney C, Carraway KL 3rd, 2010. Post-transcriptional mechanisms contribute to the suppression of the ErbB3 negative regulator protein Nrdp1 in mammary tumors. J Biol Chem 285, 28691–28697. 10.1074/jbc.M110.127977 PubMed DOI PMC
Lacombe RJS, Chouinard-Watkins R, Bazinet RP, 2018. Brain docosahexaenoic acid uptake and metabolism. Mol Aspects Med 64, 109–134. 10.1016/j.mam.2017.12.004 PubMed DOI
Guy CT, Cardiff RD, Muller WJ 1996. Activated neu induces rapid tumor progression. J Biol Chem 271, 7673–7678. 10.1074/jbc.271.13.7673 PubMed DOI
Schumacker PT 2006. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10, 175–176. 10.1016/j.ccr.2006.08.015 PubMed DOI
Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, Vaiana CA, Heindel DW, Zuckerman DS, Bos PH, Reznik E, Ye LF, Tyurina YY, Lin AJ, Shchepinov MS, Chan AY, Peguero-Pereira E, Fomich MA, Daniels JD, Bekish AV, Shmanai VV, Kagan VE, Mahal LK, Woerpel KA, Stockwell BR 2018. FINO(2) initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14, 507–515. 10.1038/s41589-018-0031-6 PubMed DOI PMC
de Duve C. 1983. Lysosomes revisited. Eur J Biochem 137, 391–397. 10.1111/j.1432-1033.1983.tb07841.x PubMed DOI
Furuta K, Ikeda M, Nakayama Y, Nakamura K, Tanaka M, Hamasaki N, Himeno M, Hamilton SR, August JT 2001. Expression of lysosome-associated membrane proteins in human colorectal neoplasms and inflammatory diseases. Am J Pathol 159, 449–455. 10.1016/S0002-9440(10)61716-6 PubMed DOI PMC
Ozaki K, Nagata M, Suzuki M, Fujiwara T, Ueda K, Miyoshi Y, Takahashi E, Nakamura Y. 1998. Isolation and characterization of a novel human lung-specific gene homologous to lysosomal membrane glycoproteins 1 and 2: significantly increased expression in cancers of various tissues. Cancer Res 58, 3499–3503. PubMed
Künzli BM, Berberat PO, Zhu ZW, Martignoni M, Kleeff J, Tempia-Caliera AA, Fukuda M, Zimmermann A, Friess H, Büchler MW, 2002. Influences of the lysosomal associated membrane proteins (Lamp-1, Lamp-2) and Mac-2 binding protein (Mac-2-BP) on the prognosis of pancreatic carcinoma. Cancer 94, 228–239. 10.1002/cncr.10162 PubMed DOI
Jensen SS, Aaberg-Jessen C, Christensen KG, Kristensen B, 2013. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas. Int J Clin Exp Pathol 6, 1294–1305. PubMed PMC
Fehrenbacher N, Bastholm L, Kirkegaard-Sørensen T, Rafn B, Bøttzauw T, Nielsen C, Weber E, Shirasawa S, Kallunki T, Jäättelä M, 2008. Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res 68, 6623–6633. 10.1158/0008-5472.CAN-08-0463 PubMed DOI
Wang Q, Yao J, Jin Q, Wang X, Zhu H, Huang F, Wang W, Qiang J, Ni Q, 2017. LAMP1 expression is associated with poor prognosis in breast cancer. Oncol Lett 14, 4729–4735. 10.3892/ol.2017.6757 PubMed DOI PMC
Northcott JM, Dean IS, Mouw JK, Weaver VM, 2018. Feeling Stress: The Mechanics of Cancer Progression and Aggression. Front Cell Dev Biol 6, 17. 10.3389/fcell.2018.00017 PubMed DOI PMC
Hu M, Carraway KL 3rd, 2020. Repurposing Cationic Amphiphilic Drugs and Derivatives to Engage Lysosomal Cell Death in Cancer Treatment. Front Oncol 10, 605361. 10.3389/fonc.2020.605361 PubMed DOI PMC
Ellegaard A-M, Bach P, Jäättelä M, 2021. Targeting Cancer Lysosomes with Good Old Cationic Amphiphilic Drugs. Rev Physiol Biochem Pharmacol. 10.1007/112_2020_56 PubMed DOI
Liu N, Tengstrand EA, Chourb L, Hsieh FY, 2014. Di-22:6-bis(monoacylglycerol)phosphate: A clinical biomarker of drug-induced phospholipidosis for drug development and safety assessment. Toxicol Appl Pharmacol 279, 467–476. 10.1016/j.taap.2014.06.014 PubMed DOI
Thompson KL, Haskins K, Rosenzweig BA, Stewart S, Zhang J, Peters D, Knapton A, Rouse R, Mans D, Colatsky T, 2012. Comparison of the diagnostic accuracy of di-22:6-bis(monoacylglycerol)phosphate and other urinary phospholipids for drug-induced phospholipidosis or tissue injury in the rat. Int J Toxicol 31, 14–24. 10.1177/1091581811430167 PubMed DOI
Hullin-Matsuda F, Luquain-Costaz C, Bouvier J, Delton-Vandenbroucke I, 2009. Bis(monoacylglycero)phosphate, a peculiar phospholipid to control the fate of cholesterol: Implications in pathology. Prostaglandins Leukot Essent Fatty Acids 81, 313–324. 10.1016/j.plefa.2009.09.006 PubMed DOI
Bampton ETW, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM, 2005. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy 1, 23–36. 10.4161/auto.1.1.1495 PubMed DOI
Glunde K, Guggino SE, Solaiyappan M, Pathak AP, Ichikawa Y, Bhujwalla ZM, 2003. Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia 5, 533–545. 10.1016/s1476-5586(03)80037-4 PubMed DOI PMC
Thomas G, Betters JL, Lord CC, Brown AL, Marshall S, Ferguson D, Sawyer J, Davis MA, Melchior JT, Blume LC, Howlett AC, Ivanova PT, Milne SB, Myers DS, Mrak I, Leber V, Heier C, Taschler U, Blankman JL, Cravatt BF, Lee RG, Crooke RM, Graham MJ, Zimmermann R, Brown HA, Brown JM, 2013. The serine hydrolase ABHD6 Is a critical regulator of the metabolic syndrome. Cell Rep 5, 508–520. 10.1016/j.celrep.2013.08.047 PubMed DOI PMC
Rampanelli E, Ochodnicky P, Vissers JP, Butter LM, Claessen N, Calcagni A, Kors L, Gethings LA, Bakker SJ, de Borst MH, Navis GJ, Liebisch G, Speijer D, van den Bergh Weerman MA, Jung B, Aten J, Steenbergen E, Schmitz G, Ballabio A, Florquin S, Aerts JM, Leemans JC, 2018. Excessive dietary lipid intake provokes an acquired form of lysosomal lipid storage disease in the kidney. J Pathol 246, 470–484. 10.1002/path.5150 PubMed DOI
Grabner GF, Fawzy N, Schreiber R, Pusch LM, Bulfon D, Koefeler H, Eichmann TO, Lass A, Schweiger M, Marsche G, Schoiswohl G, Taschler U, Zimmermann R, 2020. Metabolic regulation of the lysosomal cofactor bis(monoacylglycero)phosphate in mice. J Lipid Res 61, 995–1003. 10.1194/jlr.RA119000516 PubMed DOI PMC
Mai TT, Hamaï A, Hienzsch A, Cañeque T, Müller S, Wicinski J, Cabaud O, Leroy C, David A, Acevedo V, Ryo A, Ginestier C, Birnbaum D, Charafe-Jauffret E, Codogno P, Mehrpour M, Rodriguez R, 2017. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 9, 1025–1033. 10.1038/nchem.2778 PubMed DOI PMC